Can Teslas automatically call emergency services after a crash?

By Lennon Cihak
Teslas are already able to call emergency services in some regions
Teslas are already able to call emergency services in some regions
Tesla Haffi Iceland/YouTube

Dear Business Magnet Elon,

Like Tesla, safety is of the utmost importance for me when it comes to selecting a vehicle. Owning a Tesla has been a dream of mine since the Model 3 was announced in 2016. As you and the company made wide improvements to the vehicle and their safety, I “bit the bullet” and leased a Model 3 in January 2021.

Last month, Apple announced its new flagship lineup of devices. The most notable feature is emergency calling if a car crash is detected. The device will notify emergency services and contacts once activated, but Tesla doesn’t have such a feature available in the U.S.

It's well documented across various social media accounts that Tesla owners love their vehicles. They drive them over long distances (and some people [like myself] look for reasons to drive long distances). While Tesla’s active safety features constantly remain on and are always improving, it would be a welcomed feature for Tesla to add emergency calling once airbags are activated in the event of a car accident.

I feel strongly that this would greatly improve Tesla’s vehicle safety, as emergency services would likely be able to get to the scene much quicker with the car’s location data and immediate SOS response after airbags are discharged.

There's a lot of data Tesla could share with emergency services that could aid in an accident, such as the speed of the vehicle on impact, whether airbags were deployed, footage of the crash, vehicle location, number of occupants in the vehicle and possibly other information related to the battery to assess the risk of fire, etc.

I trust that my Model 3’s active safety features and structure will spare me and my passengers from any serious harm. However, in the event of getting in an accident that doesn’t allow me to call for help, I would appreciate the vehicle automatically doing this in an effort to get emergency services on scene as quickly as possible.

It's important to note that vehicles in Europe already have an eCall feature that lets a vehicle occupant place an emergency call with the tap of a button. Some vehicle information such as GPS coordinates and VIN are also transmitted to emergency services.

In addition, the vehicle will also place an automated call if the vehicle is involved in a crash. However, this feature is limited to vehicles in the European Union and is not available in North America and many other regions.

How Tesla's eCall Feature Works

In May of this year, I did a cross-country road trip from Los Angeles to Minnesota and back. The trip was around 6,000 miles in total. I went through multiple terrains and plenty of spots where cell service was questionable and I wasn’t at all familiar with the area. Had my vehicle been equipped with an “eCall” feature like the UK, I would’ve had an additional sense of security and safety during my trip.

I assume I’m speaking for the greater Tesla community, when I say I commend you and Tesla on everything you’ve done to build and manufacture the safest vehicles on the road. And I feel the Tesla community would strongly benefit from an SOS/eCall feature in their vehicles in North America, much like the one that is already available in Europe.

Ordering a New Tesla?

Consider using our referral code (nuno84363) to get up to $2,000 off your new Tesla and get 3 Months of FSD for free.

Tesla Included FSD V12.6.1 and V13.2.4 in the Same Update: What Caused This and What It Means

By Karan Singh
Not a Tesla App

Tesla launched two FSD updates simultaneously on Saturday night, and what’s most interesting is that they arrived on the same software version. We’ll dig into that a little later, but for now, there’s good news for everyone. For Hardware 3 owners, FSD V12.6.1 is launching to all vehicles, including the Model 3 and Model Y. For AI4 owners, FSD V13.2.4 is launching, starting with the Cybertruck.

FSD V13.2.4

A new V13 build is now rolling out to the Cybertruck and is expected to arrive for the rest of the AI4 fleet soon. However, this build seems to be focused on bug fixes. There are no changes to the release notes for the Cybertruck with this release, and it’s unlikely to feature any changes when it arrives on other vehicles.

While this update focuses on bug fixes, Tesla’s already working on bigger features for FSD V13.3, which we have already confirmed to include improvements to highway following and speed control.

FSD V12.6.1

FSD V12.6.1 builds upon V12.6, which is the latest FSD version for HW3 vehicles. While FSD V12.6 was only released for the redesigned Model S and Model X with HW3, FSD V12.6.1 is adding support for the Model 3 and Model Y.

While this is only a bug-fix release for users coming from FSD V12.6, it includes massive improvements for anyone coming from an older FSD version. Two of the biggest changes are the new end-to-end highway stack that now utilizes FSD V12 for highway driving and a redesigned controller that allows FSD to drive “V13” smooth.

It also adds speed profiles, earlier lane changes, and more. You can read our in-depth look at all the changes in FSD V12.6.

Same Update, Multiple FSD Builds

What’s interesting about this software version is that it “includes" two FSD updates, V12.6.1 for HW3 and V13.2.4 for HW4 vehicles. While this is interesting, it’s less special when you understand what’s happening under the hood.

The vehicle’s firmware and Autopilot firmware are actually completely separate. While a vehicle downloading a firmware update may look like a singular process, it’s actually performing several functions during this period. First, it downloads the vehicle’s firmware. Upon unpacking the update, it’s instructed which Autopilot/FSD firmware should be downloaded.

While the FSD firmware is separate, the vehicle can’t download any FSD update. The FSD version is hard-coded in the vehicle’s firmware that was just downloaded. This helps Tesla keep the infotainment and Autopilot firmware tightly coupled, leading to fewer issues.

What we’re seeing here is that HW3 vehicles are being told to download one FSD version, while HW4 vehicles are being told to download a different version.

While this is the first time Tesla has had two FSD versions tied to the same vehicle software version, the process hasn’t actually changed, and what we’re seeing won’t lead to faster FSD updates or the ability to download FSD separately. What we’re seeing is the direct result of the divergence of HW3 and HW4.

While HW3/4 remained basically on the same FSD version until recently, it is now necessary to deploy different versions for the two platforms. We expect this to be the norm going forward, where HW3 will be on a much different version of FSD than HW4. While each update may not include two different FSD versions going forward, we may see it occasionally, depending on which features Autopilot is dependent on.

Thanks to Greentheonly for helping us understand what happened with this release and for the insight into Tesla’s processes.

Nvidia’s Cosmos Offers Synthetic Training Data; Following Tesla’s Lead

By Karan Singh
Not a Tesla App

At the 2025 Consumer Electronics Show, Nvidia showed off its new consumer graphics cards, home-scale compute machines, and commercial AI offerings. One of these offerings included the new Nvidia Cosmos training system.

Nvidia is a close partner of Tesla - in fact, they produce and supply the GPUs that Tesla uses to train FSD - the H100s and soon-to-be H200s, located at the new Cortex Supercomputing Cluster at Giga Texas. Nvidia will also challenge Tesla’s lead in developing and deploying synthetic training data for an autonomous driving system - something Tesla is already doing.

However, this is far more important for other manufacturers. We’re going to take a look at what Nvidia is offering and how it compares to what Tesla is already doing. We’ve done a few deep dives into how Tesla’s FSD works, how Tesla streamlines FSD, and, more recently, how they optimize FSD. If you want to get familiar with a bit of the lingo and the background knowledge, we recommend reading those articles before continuing, but we’ll do our best to explain how all this synthetic data works.

Nvidia Cosmos

Nvidia’s Cosmos is a generative AI model created to accelerate the development of physical AI systems, including robots and autonomous vehicles. Remember - Tesla’s FSD is also the same software that powers their humanoid robot, Optimus. Nvidia is aiming to tackle physical, real-world deployments of AI anywhere from your home, your street, or your workplace, just like Tesla.

Cosmos is a physics-aware engine that learns from real-world video and builds simulated video inputs. It tokenizes data to help AI systems learn quicker, all based on the video that is input into the system. Sound familiar? That’s exactly how FSD learns as well.

Cosmos also has the capability to do sensor-fused simulations. That means it can take multiple input sources - video, LiDAR, audio, or whatever else the user intends, and fuse them together into a single-world simulation for your AI model to learn from. This helps train, test, and validate autonomous vehicle behavior in a safe, synthetic format while also providing a massive breadth of data.

Data Scaling

Of course, Cosmos itself still requires video input - the more video you feed it, the more simulations it can generate and run. Data scaling is a necessity for AI applications, as you’ll need to feed it an infinite amount of data to build an infinite amount of scenarios for it to train itself on.

Synthetic data also has a problem - is it real? Can it predict real-world situations? In early 2024, Elon Musk commented on this problem, noting that data scales infinitely both in the real world and in simulated data. A better way to gather testing data is through real-world data. After all, no AI can predict the real world just yet - in fact, that’s an excellent quantum computing problem that the brightest minds are working on.

Yun-Ta Tsai, an engineer at Tesla’s AI team, also mentioned that writing code or generating scenarios doesn’t cover what even the wildest AI hallucinations might come up with. There are lots of optical phenomena and real-world situations that don’t necessarily make sense in the rigid training sets that AI would develop, so real-world data is absolutely essential to build a system that can actually train a useful real-world AI.

Tesla has billions of miles of real-world video that can be used for training, according to Tesla’s Social Media Team Lead Viv. This much data is essential because even today, FSD encounters “edge cases” that can confuse it, slow it down, or render it incapable of continuing, throwing up the dreaded red hands telling the user to take over.

Cosmos was trained on approximately 20 million hours of footage, including human activities like walking and manipulating objects. On the other hand, Tesla’s fleet gathers approximately 2,380 recorded minutes of real-world video per minute. Every 140 hours - just shy of 6 days - Tesla’s fleet gathers 20 million hours of footage. That was a little bit of back-of-the-napkin math, calculated at 60 mph as the average speed.

Generative Worlds

Both Tesla’s FSD and Nvidia’s Cosmos can generate highly realistic, physics-based worlds. These worlds are life-like environments and simulate the movement of people and traffic and the real-life position of obstacles and objects, including curbs, fences, buildings, and other objects.

Tesla uses a combination of real-world data and synthetic data, but the combination of data is heavily weighted to real-world data. Meanwhile, companies who use Cosmos will be weighting their data heavily towards synthetically created situations, drastically limiting what kind of cases they may see in their training datasets.

As such, while generative worlds may be useful to validate an AI quickly, we would argue that these worlds aren’t as useful as real-world data to do the training of an AI.

Overall, Cosmos is an exciting step - others are clearly following in Tesla’s footsteps, but they’re extremely far behind in real-world data. Tesla has built a massive first-mover advantage in AI and autonomy, and others are now playing catch-up.

We’re excited to see how Tesla’s future deployment of its Dojo Supercomputer for Data Labelling adds to its pre-existing lead, and how Cortex will be able to expand, as well as what competitors are going to be bringing to the table. After all, competition breeds innovation - and that’s how Tesla innovated in the EV space to begin with.

Latest Tesla Update

Confirmed by Elon

Take a look at features that Elon Musk has said will be coming soon.

More Tesla News

Tesla Videos

Latest Tesla Update

Confirmed by Elon

Take a look at features that Elon Musk has said will be coming soon.

Subscribe

Subscribe to our weekly newsletter