Tesla to Remove Steering Wheel Nag in January 2023
MKBHD/Twitter
Elon Musk confirmed that Tesla vehicles will no longer require the driver to apply force to the wheel while using FSD Beta. All Teslas currently require drivers to apply resistance to the wheel at certain intervals to confirm attentiveness. However, with the addition of the cabin camera in 2017, this requirement may soon go away.
Elon confirmed the change in response to a tweet from @WholeMarsBlog, who asked if users with more than 10,000 miles driven using FSD Beta software, could have the option to disable the tedious steering wheel nag.
Elon replied, "Agreed, update coming in Jan."
While using Autopilot, drivers are alerted to put their hands on the wheel after 30 to 70 seconds of not applying torque to the wheel. The amount of time varies depending on situations and models. If a driver fails to apply force after being alerted, Autopilot could be suspended for the remainder of the drive, or access to FSD Beta could be removed.
FSD Beta allows drivers to get up to five strikes before Tesla disables the feature for an extended period. For vehicles without a cabin camera, the number of strikes is limited to three.
Possibilities
It's still unclear what Elon meant by agreeing to the 'option to turn off steering wheel nag.' Tesla may be able to more accurately gauge hand tension in an upcoming update, or they may switch to using the vehicle's cabin camera. While many are expecting the use of the cabin camera to replace detecting tension on the steering wheel, Tesla may have simply improved the ability to detect hand tension. Tesla recently added the ability to detect defeat devices, so it's obvious they're making some improvements in that area.
If Tesla transitions to only using the cabin camera, this change would leave out Model S and Model X vehicles manufactured before 2021, since they don't contain a camera inside the vehicle.
If the nag is ultimately removed, this is a huge step forward for Autopilot and FSD Beta use, as it would truly offer a hands-free experience.
Since Autopilot was first introduced in 2014, it has relied on the application of force as a sign of driver attentiveness. Removing the nag would be a huge step forward for FSD Beta and the level of autonomy that self-driving Teslas can have.
Subscribe
Subscribe to our newsletter to stay up to date on the latest Tesla news, upcoming features and software updates.
Tesla’s Cybertruck has officially earned a 5-Star Safety Rating from the NHTSA—an impressive achievement given the vehicle’s design. The achievement demonstrates Tesla’s engineering prowess. As one engineer points out, it wasn’t an easy feat.
Interestingly, the NHTSA only recently disclosed the results, despite the crash tests being completed a while ago. According to Lars Moravy, Tesla’s VP of Vehicle Engineering, the team had been aware of the 5-star rating for quite some time. While the reason for the delay remains unclear, now that the results are public, Tesla’s engineers can finally share how they achieved the rating.
Crumple Zones
Wes Morril, the Cybertruck’s Lead Engineer, wrote about the crash test video on X recently, addressing the claims that the Cybertruck doesn’t have a crumple zone. He also posted a side-by-side video (below) of the engineering analysis and the crash test itself.
Engineered Crash Safety
There’s a lot of engineering precision at play when a Cybertruck is involved in a crash. Unlike traditional crash structures that rely on crash cans and collapse points, the Cybertruck’s front gigacasting is designed to absorb and redirect impact forces in a highly controlled manner.
It all starts with the bumper beam, which crushes within the first few milliseconds of a high-speed impact. At the same time, the vehicle’s sensors rapidly analyze the crash dynamics and determine the optimal deployment of safety restraints, including airbags and seat belt pre-tensioners. These split-second actions are crucial in keeping occupants safe.
As the crash progresses, the vehicle’s structure deforms in a carefully engineered sequence. The drive unit cradle bends, directing the solid drive unit downward and out of the way, allowing the gigacasting to begin absorbing impact forces.
The casting crushes cell by cell, methodically dissipating energy in a controlled manner. This gradual deceleration reduces the g-forces transferred to occupants, making the crash much less severe. As the gigacast begins crushing, the safety restraints are deployed.
As Wes points out in his post - you can see how accurate the virtual analysis and modeling were. The video shows the simulated crash side by side with the real-life crash test and they’re almost identical. All that virtual testing helps provide feedback into the loop to design a better and safer system - one that is uniquely different than any other vehicle on the road.
All the armchair experts claimed the Cybertruck has no crumple zone and I get it, the proportions seem impossible. It was a tough one and there is a lot of engineering that went into it. Let me break it down for you:
Tesla has pioneered the use of single-piece castings for the front and rear sections of their vehicles, thanks to its innovative Gigapress process. Many automakers are now following suit, as this approach allows the crash structure to be integrated directly into the casting.
This makes the castings not only safer but also easier to manufacture in a single step, reducing costs and improving repairability. For example, replacing the entire rear frame of a Cybertruck is estimated to cost under $10,000 USD, with most of the expense coming from labor, according to estimates shared on X after high-speed rear collisions.
These insights come from Sandy Munro’s interview (posted below) with Lars Moravy, Tesla’s VP of Vehicle Engineering, highlighting how these advancements contribute to the improvements in Tesla’s latest vehicles, including the New Model Y.
However, with the new Model Y, Tesla has decided to go a different route and eliminated the front gigacast.
No Front Casting
Tesla’s factories aren’t equipped to produce both front and rear castings for the Model Y. Only Giga Texas and Giga Berlin used structural battery packs, but these were quickly phased out due to the underwhelming performance of the first-generation 4680 battery.
Tesla has gone back to building a common body across the globe, increasing part interchangeability and reducing supply chain complexity across the four factories that produce the Model Y. They’ve instead improved and reduced the number of unique parts up front to help simplify assembly and repair.
There is still potential for Tesla to switch back to using a front and rear casting - especially with their innovative unboxed assembly method. However, that will also require Tesla to begin using a structural battery pack again, which could potentially happen in the future with new battery technology.
Rear Casting Improvements
The rear casting has been completely redesigned, shedding 7 kg (15.4 lbs) and cutting machining time in half. Originally weighing around 67 kg (147 lbs), the new casting is now approximately 60 kg (132 lbs).
This 15% weight reduction improves both vehicle dynamics and range while also increasing the rear structure’s stiffness, reducing body flex during maneuvers.
Tesla leveraged its in-house fluid dynamics software to optimize the design, resulting in castings that resemble organic structures in some areas and flowing river patterns in others. Additionally, manufacturing efficiency has dramatically improved—the casting process, which originally took 180 seconds per part, has been reduced to just 75 seconds, a nearly 60% time reduction per unit.
Advancements in die-casting machines and cooling systems have allowed @Tesla to dramatically reduce cycle times and improve dimensional stability. pic.twitter.com/WB5ji67rvV
Tesla’s new casting method incorporates conformal cooling, which cools the die directly within the gigapress. Tesla has been refining the die-casting machines and collaborating with manufacturers to improve the gigapress process.
In 2023, Tesla patented a thermal control unit for the casting process. This system uses real-time temperature analysis and precise mixing of metal streams to optimize casting quality. SETI Park, which covers Tesla’s manufacturing patents on X, offers a great series for those interested in learning more.
The new system allows Tesla to control the flow of cooling liquid, precisely directing water to different parts of the die, cooling them at varying rates. This enables faster material flow and quicker cooling, improving both dimensional stability and the speed of removing the part from the press for the next stage.
With these new process improvements, Tesla now rolls out a new Model Y at Giga Berlin, Giga Texas, and Fremont every 43 seconds—an astounding achievement in auto manufacturing. Meanwhile, Giga Shanghai operates two Model Y lines, delivering a completed vehicle every 35 seconds.