Back in August of 2021, we compared NCA (lithium nickel cobalt aluminum oxide) batteries with LFP (lithium iron phosphate) batteries - "Tesla's LFP (iron) batteries compared. Which one should you buy?". NCA batteries had been the standard for all Tesla models in the USA, but Tesla’s plans to switch to LFP in Model 3s and Model Ys prompted that article. Tesla even offered more rapid delivery to customers waiting for the cars they had on order if they decided to get their car with LFP batteries.
A nickel mine in Indonesia
There are trade-offs between these two battery types in terms of weight, range, consequences of carrying a full charge, regenerative braking, and cold weather behavior which are all discussed in the column mentioned above. These are all valid considerations, but working from the assumption that a prime motivation of most people buying an electric car is to promote a healthy environment and a healthier planet (by cutting CO2 emissions), it should also be mentioned that these two battery chemistries have vastly different implications for the environment. Crucially, NCA batteries are built with a lot of nickel (about 18 kg in a Tesla) whereas LFP batteries have none. But high demand for nickel for Teslas (and many other electric vehicle models) is accelerating strip-mining in Indonesia and the Philippines. Mining is one thing, but strip mining is more problematic.
Strip mining on tropical islands in Southeast Asia is especially harmful because these are centers of biodiversity with large numbers of unique species of plants and animals, many of which are endangered - some critically so. Unlike forest clearing, where the land retains some value for agricultural production, strip mining obliterates what is there and it will likely be decades, if not centuries, before such areas are productive again. When not rainforests, this strip mining is destroying agricultural land. Plus, Southeast Asia has high rainfall, so once the land is laid bare, erosion carries large amounts of sediment onto nearby coral reefs.
Details matter, however, and in this case it should be pointed out that nickel is mined from two sources - laterite and sulfide. Laterite deposits (as in Indonesia and the Philippines) are formed by the weathering of ultramafic bedrock in areas of high seasonal rainfall, along ridges and mountain shoulders. Through leaching, nickel accumulates 10-25 m below the surface and the only way to get at it is to clear off the top 10 m and everything living there.
In contrast, sulfide deposits are in the bedrock and nickel is extracted by hard-rock mining, sometimes near the surface, but often far underground. This distinction is important for electric vehicles because sulfide deposits are smelted into the highly pure nickel which is required for batteries. When laterite nickel is smelted, the lower purity nickel primarily goes to other uses, such as stainless steel. However, if laterite nickel is processed by High Pressure Acid Leaching (HPAL), nickel of sufficient purity for batteries is produced, but at present not very much is produced this way. Of the other uses of nickel besides for batteries, some processes also need high purity nickel, but some can use either high or lower purity nickel. Another important point is that there are not likely prospects for increased production of sulfide nickel, whereas there are extensive areas available for mining laterite nickel.
This may all seem convoluted, but what this all means is 1) as consumption of sulfide nickel for batteries grows with the expansion of the electric vehicle market, this will take up more and more of available sulfide supplies; 2) processes which can use either will hence shift to laterite nickel. Thus, while some may point out that electric vehicle batteries, for the most part, do not use laterite nickel and hence are not the cause of the expanding strip-mining occurring in Indonesia and the Philippines (and in a few other places such as Venezuela and Brazil), it is nevertheless true that additional demand for laterite nickel is a consequence of vehicle batteries taking an increasingly large portion of the available sulfide nickel.
Despite much press coverage last year, Tesla's transition to LFP batteries has only made it to the Model 3 Rear Wheel Drive model (in the USA). Other models may get LFP batteries in the future, as they have in Europe. So, buying a Tesla is a great way to contribute to the decarbonization of your personal transportation, but to avoid the harmful impacts of high-nickel battery chemistries, lithium iron phosphate (LFP) is the best, even if you have to be selective as to which model you get.
Subscribe
Subscribe to our newsletter to stay up to date on the latest Tesla news, upcoming features and software updates.
To show off its scalability, Tesla has officially launched its first major expansion of its Robotaxi service area in Austin, Texas. The expansion comes just 22 days after the program’s initial public launch.
That’s a stunningly quick pace that sets a benchmark for how fast we’ll be expecting Tesla to roll out additional expansions as they validate and safety-check in additional area and cities. The new geofence not only adds a significant amount of new territory, but also makes Tesla’s service area in Austin approximately 4 miles larger than Waymo’s.
The expansion, which went live for users in the early access program earlier today, reshapes the map into… what we can call an upside-down T. It helps connect more parts of the city, and increases the service area by more than double.
So far, the initial launch has been operating without any significant issues, which means Tesla is ready and willing to continue expanding the program.
Rapid Scaling
While the larger map is a clear win for early-access users and especially those who live in Austin, the most significant aspect here is just how fast Tesla is going. Achieving a major expansion in just over three weeks since its initial launch is a testament to Tesla’s generalized autonomy approach with vision only.
Unlike methods that require intensive, street-by-street HD mapping that can take months or even years just to expand to a few new streets, Tesla’s strategy is built for this type of speed.
This is Tesla’s key advantage - it can leverage its massive fleet and AI to build a generalized, easily-applicable understanding of the world. Expanding to a new area becomes less about building a brand-new, high-definition map of every street light and obstacle, but instead a targeted safety validation process.
Tesla can deploy a fleet of validation vehicles to intensely focus on one zone, allowing the neural nets to learn the quirks of that area’s intersections and traffic flows. Once a high level of safety and reliability is demonstrated, Tesla can simply just redraw the geofence.
Geofence Size
Tesla went from approximately 19.7 sq mi (51 sq km) to 42.07 sq mi (109 sq km)in just 22 days, following the initial launch and safety validation. Within a few short days of launch, we began seeing the first Tesla engineering validation vehicles, hitting Austin’s downtown core, preparing for the next phase.
The larger footprint means more utility for riders, and that’s big, especially since the new service area is approximately four square miles larger than Waymo’s established operational zone in the city.
Highways and Fleet Size
The new territory enables longer and more practical trips, with the longest trip at tip-to-tip taking about 42 minutes from the southern edge of the old geofence to the northern edge of the new geofence. For now, Tesla has limited its fleet to operating exclusively on surface streets and does not use highways to complete its routes.
We also don’t know if Tesla has increased the vehicle fleet size quite yet - but if they’re intending to maintain or reduce wait times for even the early-access riders, the fleet size will easily need to be doubled to keep up with the new area.
This video clip shows the @robotaxi follows the Interstate (I-35) but does not take the highest.
Perhaps the most telling bit about how fast Tesla is expanding is that they’re already laying the groundwork for the next expansion. Validation vehicles have been spotted operating in Kyle, Texas, approximately 20 miles south of the geofence’s southern border.
Robotaxi Validation vehicles operating in Kyle, Texas.
Financial_Weight_989 on Reddit
This means that while one expansion is being rolled out to the public, Tesla is already having its engineering and validation teams work on the next expansion. That relentless pace means that if this keeps up, Tesla will likely have a good portion of the Austin metropolitan area - the zone they’ve applied for their Autonomy license for - serviceable by the end of 2025.
The pilot? A success. The first expansion? Done. The second expansion? Already in progress. Robotaxi is going to go places, and the next question won't be about whether the network is going to grow. Instead, the new questions are: How fast, and where next?
One of the most welcome features of the recently refreshed 2026 Model S and Model X is the addition of a front bumper camera. Now, thanks to some clever work by the Tesla community, it has been confirmed that this highly requested feature can be retrofitted onto older HW4-equipped (AI4) Model S and Model X vehicles.
The discovery and first installation were performed by Yaro on a Model X, and Tesla hacker Green helped provide some additional insight on the software side.
Unused Port and a Software Switch
The foundation for this retrofit has been in place for a long time, laid by Tesla itself. All HW4-equipped Model S and Model X vehicles, even those built before the recent refresh, have an empty, unused camera connector slot on the FSD computer, seemingly waiting for this exact purpose.
While the physical port is there, getting the car to recognize the camera requires a software change. According to Green, a simple configuration flag change is all that is needed to enable the front camera view on the vehicle’s main display once the hardware is connected and ready.
The Hardware: Parts & Costs
Yaro, who performed the installation on a Model X, provided a detailed breakdown of the parts and approximate costs involved.
Front Camera - $200 USD
Bumper Grill (with camera cutout) - $80 USD
Bumper Harness - $130 USD
Washer Pump - $15 USD
Washer Hoses - $30 USD
The total cost for the Model X hardware comes to around $455 USD, which isn’t too expensive if you were to DIY it. Tesla’s Electronic Parts Catalog has some of these parts available for order, and some can be ordered via your local Service Center. Yaro did note that he had to jerry-rig the camera connector cable, having salvaged the cable from a different camera harness.
The Model S vs Model X
This is where the project varies significantly. For the Model X, the retrofit is relatively simple. Because the main bumper shape is the same, only the lower bumper grill needs to be swapped for the version with the camera opening, along with installing the camera itself and the washer hardware.
For the Model S, the process is a bit more complex and expensive. Due to the different shape of the pre-refresh bumper, the entire front fascia assembly must be replaced to accommodate the camera. This makes the project far more expensive and laborious.
DIY or Official Retrofit?
The official front bumper camera on the Model X
Not a Tesla App
Right now, this is only a DIY retrofit. Tesla hasn’t indicated that they intend to offer this as an official retrofit for older vehicles at this time, but given the fact that it isn’t too complex, we expect that there is a possibility that they may do so in the near future.
All in all, this is about 3-5 hours of labor for the Model X, and approximately 5-7 hours of labor for the Model S, based on the official Tesla Service Manuals, using the front fascia reinstall process as a guide.
That means if Tesla does offer this as a retrofit service, it will likely cost between $800 and $1,200 USD when factoring in Tesla’s labor rates, but the total cost will vary regionally.
For those who own an AI4 Model S or Model X, it could be possible to request service for this installation, but as far as we’re aware, there is no official service notice for this retrofit at this time.
What About the Model 3?
For owners of the refreshed Highland Model 3, the only vehicle now left without a front bumper camera, the possibility of a retrofit is still uncertain. It has been noted by Green that some, but not all Model 3s built in late 2024 have an empty camera port on the FSD computer. This inconsistency means that while a retrofit may be possible for a subset of Model 3s, it isn’t a guaranteed upgrade path like it is for the Model S or Model X.