Tesla adds Track Mode for the Model S Plaid in 2021.44.30 [images, video]

By Nuno Cristovao

The Model 3 Performance model didn't include Track Mode when it was first introduced. Tesla added the initial offering of Track Mode in late 2018.

Track Mode in 2021.44.30
Track Mode in 2021.44.30
JbTeslaman/Twitter (Edited by Not a Tesla App)

Tesla later released Track Mode V2 as a software update.

The Model S Plaid was introduced in the summer of 2021. Similar to the Model 3, Track Mode wasn't available at launch.

With software update 2021.44.30, Tesla is rolling out Track Mode to the Model S Plaid.

Adjust Handling

Track Mode lets you fine-tune your vehicle's settings and disable or tone down certain features such as traction control.

Track Mode in the Model S offers similar capabilities to the Model 3. It lets you adjust handling, traction control, and regenerative braking.

The car will also make other adjustments. When Track Mode is enabled it will precondition the battery for peak performance and will increase brake cooling.

If the vehicle is unable to cool the brakes sufficiently, it will warn you with a 'critically high brake temperature' warning.

Track Mode in 2021.44.30
Track Mode in 2021.44.30
JbTeslaman/Twitter (Edited by Not a Tesla App)

Visualizations

When Track Mode has been enabled the visualizations in the instrument cluster will also change to display additional details about the car.

The visualization will show the internals of the car; similar to the charging screen. It'll display the chassis of the vehicle, the wheels, brakes, motors, and battery.

Each item in the visualization is colored to give you feedback for the specific item.

For example, the Model 3 Performance will turn each wheel green, yellow, or red depending on the wheel's traction.

There is also a visualization for G-forces that's similar to the Model 3. It'll display the direction and amount of G-forces.

Walk through the Track Mode menus

Lap Times and Recording

In addition to customizing how the vehicle handles, the increased performance cooling, and the visualizations, Track Mode also includes some additional features.

Track Mode will let you set start and finish markers on the map. When these markers are set, the car will automatically display lap timings and record each lap through the car's cameras.

The cameras used during track mode are the same ones that are available when using the Dashcam. However, when using Track Mode, the car will automatically save each lap as a separate video to your USB drive.

Presets

Track Mode in 2021.44.30
Track Mode in 2021.44.30
JbTeslaman/Twitter (Edited by Not a Tesla App)

When you customize the handling of the vehicle, you will also be able to save the settings and give them a name.

You can have up to 20 different presets for various conditions or events. The vehicle comes with two presets, one for racing and for drifting.

Here is a fantastic video of Track Mode in use on the Model 3 Performance.

Release Notes for Track Mode

The release notes for Track Mode in 2021.44.30 discuss some of the features available in Track Mode.

Optimize your Plaid configuration for dynamic driving exclusively on closed courses and experience the unmatched performance at many different venues. To enable, tap Controls > Pedals & Steering > Track Mode.

- Thermals: The heat pump system cools more aggressively, maximizing powertrain endurance and performance. Enable post-drive cooling to shorten wait times between sessions.

- Drive Systems: Torque vectoring authority is increased across the three motors, elevating the vehicle's agility and cornering capability. The accelerator pedal allows more precise torque control, and regenerative braking power is strengthened to recover more energy.

- Suspension: Adaptive damping reduces vehicle motions, improving handling and promoting driver confidence. Ride height is automatically set to 'Low' upon drive off.

- Display: A track-focused interface includes a lap timer, G-meter (real-time accelerometer), vehicle thermals monitor, Dashcam video capture, vehicle telemetry capture, and offers customization options.

Ordering a New Tesla?

Consider using our referral code (nuno84363) to get up to $1,000 off your Tesla.

Tesla Debuts Super Manifold V2 in the New Model Y—But Not Every Car Has It Yet

By Not a Tesla App Staff
Tesla Service Manual

The Super Manifold is Tesla’s solution to reducing the complexity of a heat pump system for an EV. Tesla showed off its engineering chops back with the original Model Y in 2019, where it introduced a new 8-way valve (the Octovalve) and a new heat pump alongside the uniquely designed Super Manifold to improve efficiency.

Now, Tesla is launching an improved version with the refreshed Model Y - the Super Manifold V2. We got to hear about it thanks to Sandy Munro’s interview with Tesla’s Lars Moravy (Vice President of Vehicle Engineering) and Franz Von Holzhausen (Chief of Vehicle Design). You can watch the video further below.

What Is The Super Manifold?

The Super Manifold (get it, Superman?), is an all-in-one package that brings in all the components of a heat pump system into one component. The Super Manifold packs all the refrigerant and coolant components around a 2-layer PCB (printed circuit board).

This Super Manifold would normally have 15 or 20 separate components, but Tesla managed to integrate them all into one nice package. That presented Tesla with a new challenge: how to integrate a heat pump—capable of both heating and cooling—into a single, efficient platform?

Several years ago, Tesla designed the Octovalve. It combines inlets and outlets and can variably change between heating or cooling on the fly - without needing to be plumbed in different directions. This is especially important for EVs, which may need to heat the battery with the waste heat generated from the motors or the heat pump while also cooling the cabin - or vice versa.

Original Super Manifold V1.1

Tesla launched the Super Manifold V1.1 back in 2022, and it provided some minor improvements to the waste heat processing of the heat exchange system. It also tightened up the Octovalve, preventing the leakage of oils into the HVAC loop that could cause it to freeze at extremely low temperatures.

Tesla has been using the V1.1 for several years now, and it has really solved the vast majority of issues with the heat pump system that many older Model Ys experienced.

Super Manifold V2 Coming Soon

Now, Tesla is introducing the Super Manifold V2 in the new Model Y. It will improve the overall cooling capacity provided by the original Super Manifold, but unfortunately, not every single new Model Y will come with it equipped. Tesla will be introducing it slowly across the lineup and at different rates at different factories, depending on part availability.

Eventually, the Super Manifold V2 will also make its way to other vehicles, potentially including the upcoming refresh for the Model S and Model X, but initially, it’ll be exclusive to the new Model Y. Tesla expects to have the new manifold in every new Model Y later this year.

If you’re interested in checking out the whole video, we’ve got it for you below.

Breaking Down Tesla’s Autopilot vs. Wall “Wile E. Coyote” Video

By Not a Tesla App Staff
Mark Rober

Mark Rober, of glitter bomb package fame, recently released a video titled Can You Fool A Self-Driving Car? (posted below). Of course, the vehicle featured in the video was none other than a Tesla - but there’s a lot wrong with this video that we’d like to discuss.

We did some digging and let the last couple of days play out before making our case. Mark Rober’s Wile E. Coyote video is fatally flawed.

The Premise

Mark Rober wanted to prove whether or not it was possible to fool a self-driving vehicle, using various test scenarios. These included a wall painted to look like a road, low-lying fog, mannequins, hurricane-force rain, and bright beams.

All of these individual “tests” had their own issues - not least because Mark didn’t adhere to any sort of testing methodology, but because he was looking for a result - and edited his tests until he was sure of it.

Interestingly, many folks on X were quick to spot that Mark had been previously sponsored by Google to use a Pixel phone - but was using an iPhone to record within the vehicle - which he had edited to look like a Pixel phone for some reason. This, alongside other poor edits and cuts, led many, including us, to believe that Mark’s testing was edited and flawed.

Flaw 1: Autopilot, Not FSD

Let’s take a look at the first flaw. Mark tested Autopilot - not FSD. Autopilot is a driving aid for lane centering and speed control - and is not the least bit autonomous. It cannot take evasive maneuvers outside the lane it is in, but it can use the full stable of Tesla’s extensive features, including Automatic Emergency Braking, Forward Collision Warnings, Blind Spot Collision Warnings, and Lane Departure Avoidance.

On the other hand, FSD is allowed and capable of departing the lane to avoid a collision. That means that even if Autopilot tried to stop and was unable to, it would still impact whatever obstacle was in front of it - unlike FSD.

As we continue with the FSD argument - remember that Autopilot is running on a 5-year-old software stack that hasn’t seen updates. Sadly, this is the reality of Tesla not updating the Autopilot stack for quite some time. It seems likely that they’ll eventually bring a trimmed-down version of FSD to replace Autopilot, but that hasn’t happened yet.

Mark later admitted that he used Autopilot rather than FSD because “You cannot engage FSD without putting in a destination,” which is also incorrect. It is possible to engage FSD without a destination, but FSD chooses its own route. Where it goes isn’t within your control until you select a destination, but it tends to navigate through roads in a generally forward direction.

The whole situation, from not having FSD on the vehicle to not knowing you can activate FSD without a destination, suggests Mark is rather unfamiliar with FSD and likely has limited exposure to the feature.

Let’s keep in mind that FSD costs $99 for a single month, so there’s no excuse for him not using it in this video.

Flaw 2: Cancelling AP and Pushing Pedals

Many people on X also followed up with reports that Mark was pushing the pedals or pulling on the steering wheel. When you tap on the brake pedal or pull or jerk the steering wheel too much, Autopilot will disengage. For some reason, during each of his “tests,” Mark closely held the steering wheel of the vehicle.

This comes off as rather odd - at the extremely short distances he was enabling AP at, there wouldn’t be enough time for a wheel nag or takeover warning required. In addition, we can visibly see him pulling the steering wheel before “impact” in multiple tests.

Over on X, techAU breaks it down excellently on a per-test basis. Mark did not engage AP in several tests, and he potentially used the accelerator pedal during the first test - which means that Automatic Emergency Braking is overridden. In another test, Mark admitted to using the pedals.

Flaw 3: Luminar Sponsored

This video was potentially sponsored by a LiDAR manufacturer - Luminar. Although Mark says that this isn’t the case. Interestingly, Luminar makes LiDAR rigs for Tesla - who uses them to test ground truth accuracy for FSD. Just as interesting, Luminar’s Earnings Call was also coming up at the time of the video’s posting.

Luminar had linked the video at the top of their homepage but has since taken it down. While Mark did not admit to being sponsored by Luminar, there appear to be more distinct conflicts of interest, as Mark’s charity foundation has received donations from Luminar’s CEO.

Given the positivity of the results for Luminar, it seems that the video had been well-designed and well-timed to take advantage of the current wave of negativity against Tesla, while also driving up Luminar’s stock.

Flaw 4: Vision-based Depth Estimation

The next flaw to address is the fact that humans and machines can judge depth using vision. On X, user Abdou ran the “invisible wall” through a monocular depth estimation model (DepthAnythingV2) - one that uses a single image with a single angle. This fairly simplified model can estimate the distance and depth of items inside an image - and it was able to differentiate the fake wall from its surroundings easily.

Tesla’s FSD uses a far more advanced multi-angle, multi-image tool that stitches together and creates a 3D model of the environment around it and then analyzes the result for decision-making and prediction. Tesla’s more refined and complex model would be far more able to easily detect such an obstacle - and these innovations are far more recent than the 5-year-old Autopilot stack.

While detecting distances is more difficult in a single image, once you have multiple images, such as in a video feed, you can more easily decipher between objects and determine distances by tracking the size of each pixel as the object approaches. Essentially, if all pixels are growing at a constant rate, then that means it’s a flat object — like a wall.

Case in Point: Chinese FSD Testers

To make the case stronger - some Chinese FSD testers took to the streets and put up a semi-transparent sheet - which the vehicle refused to drive through or drive near. It would immediately attempt to maneuver away each time the test was engaged - and refused to advance with a pedestrian standing in the road.

Thanks to Douyin and Aaron Li for putting this together, as it makes an excellent basic example of how FSD would handle such a situation in real life.

Flaw 5: The Follow-Up Video and Interview

Following the community backlash, Mark released a video on X, hoping to resolve the community’s concerns. However, this also backfired. It turned out Mark’s second video was of an entirely different take than the one in the original video - this was at a different speed, angle, and time of initiation.

Mark then followed up with an interview with Philip DeFranco (below), where he said that there were multiple takes and that he used Autopilot because he didn’t know that FSD could be engaged without a destination. He also answered here that Luminar supposedly did not pay him for the video - even with their big showing as the “leader in LiDAR technology” throughout the video.

Putting It All Together

Overall, Mark’s video was rather duplicitous - he recorded multiple takes to get what he needed, prevented Tesla’s software from functioning properly by intervening, and used an outdated feature set that isn’t FSD - like his video is titled.

Upcoming Videos

Several other video creators are already working to replicate what Mark “tried” to test in this video.

To get a complete picture, we need to see unedited takes, even if they’re included at the end of the video. The full vehicle specifications should also be disclosed. Additionally, the test should be conducted using Tesla’s latest hardware and software—specifically, an HW4 vehicle running FSD v13.2.8.

In Mark’s video, Autopilot was engaged just seconds before impact. However, for a proper evaluation, FSD should be activated much earlier, allowing it time to react and, if capable, stop before hitting the wall.

A wave of new videos is likely on the way—stay tuned, and we’ll be sure to cover the best ones.

Latest Tesla Update

Confirmed by Elon

Take a look at features that Elon Musk has said will be coming soon.

More Tesla News

Tesla Videos

Latest Tesla Update

Confirmed by Elon

Take a look at features that Elon Musk has said will be coming soon.

Subscribe

Subscribe to our weekly newsletter