The latest iteration of Tesla's FSD Beta, version 10.3 has now been released. The update which was originally scheduled for Friday night went out early this morning.
Tesla releases FSD Beta 10.3
All Electric/YouTube
Existing beta testers received the update as well as users of Tesla's Safety Score who had a rating of 99 or higher.
We were wondering whether Tesla would release the beta to all drivers who have achieved a Safety Score of 99 in one swope, as that group is quite a bit larger than those who previously achieved a perfect score.
This release looks to be fairly widespread, much more so than previous betas. It's not clear yet whether everyone with a score 99 has received this beta, this is definitely the largest expansion of beta testers thus far.
Tesla has shared technical release notes for Beta 10.3, which comes in with update 2021.36.5.2. The release notes include detailed improvements in this beta, such as the ability to detect turn signals and hazards in addition to brake lights.
These are Tesla's technical release notes for this beta release:
Added FSD Profiles that allow drivers to control behaviors like rolling stops, exiting passing lanes, speed-based lane changes, following distance and yellow light headway.
Added planning capability to drive along oncoming lanes to maneuver around path blockage.
Improved creeping speed by linking speed to visibility network estimation and distance to encroachment point of crossing lanes.
Improved crossing object velocity estimation by 20% and yaw estimation by 25% by upreving surround video vehicle network with more data. Also increased system frame rate by +1.7 frames per second.
Improved vehicle semantic detections (e.g. brake lights, turn indicators, hazards) by adding +25k video clips to the training data set.
Improved static obstacle control by upreving the generalized static object network with 6k more video clips (+5.6% precision, +2.5% recall)
Allowed more acceleration when merging from on-ramps onto major roads and when lane changing from slow to fast lanes.
Reduced false slowdowns and improved offsetting for pedestrians by improving the model of interaction between pedestrians and the static world.
Improved turning profile for unprotected turns by allowing ego to cross over lane lines more naturally, when safe to do so.
Improved speed profile for boosting onto high speed roads by enforcing stricter longitudinal and lateral acceleration limits required to beat the crossing object.
There have also been improvements in many areas, such as creeping, going around road blockages, detection of static objects on the road such as construction barriers, "phantom" braking and improved acceleration in key areas such as merging onto major roads.
One of the biggest additions in this release is a new option called FSD Profiles, that lets you choose the driving style when in Autopilot.
The three styles to pick from are Chill, Average and Assertive. Each profile will determine how your vehicle drives and interacts in certain road scenarios.
Some users who received the FSD Beta hits morning were initially able to use FSD, but are now facing an issue where Autopilot will no longer engage. It's unlikely that Tesla is limiting the use of the FSD Beta, but hopefuly Tesla can fix the issue without needing to roll out another update.
The next FSD Beta release may be v11, where we may finally see combined highway and city driving Autopilot stacks. If Tesla decides to release this in v11, it will be our first look at Tesla applying everything they've learned in city FSD to the highway. It may offer some short-term setbacks but overall should be a drastic improvement in how the car handles sharp highway curves and off and on ramps.
No timeline has yet been given for v11, but Tesla has been consistently releasing updated FSD Betas in 2-3 week increments.
The next iteration of FSD may also see an even wider release than we're seeing with 10.3, as it may open up to Safety Score users who have a score of 98 or higher.
Tesla’s Cybertruck has officially earned a 5-Star Safety Rating from the NHTSA—an impressive achievement given the vehicle’s design. The achievement demonstrates Tesla’s engineering prowess. As one engineer points out, it wasn’t an easy feat.
Interestingly, the NHTSA only recently disclosed the results, despite the crash tests being completed a while ago. According to Lars Moravy, Tesla’s VP of Vehicle Engineering, the team had been aware of the 5-star rating for quite some time. While the reason for the delay remains unclear, now that the results are public, Tesla’s engineers can finally share how they achieved the rating.
Crumple Zones
Wes Morril, the Cybertruck’s Lead Engineer, wrote about the crash test video on X recently, addressing the claims that the Cybertruck doesn’t have a crumple zone. He also posted a side-by-side video (below) of the engineering analysis and the crash test itself.
Engineered Crash Safety
There’s a lot of engineering precision at play when a Cybertruck is involved in a crash. Unlike traditional crash structures that rely on crash cans and collapse points, the Cybertruck’s front gigacasting is designed to absorb and redirect impact forces in a highly controlled manner.
It all starts with the bumper beam, which crushes within the first few milliseconds of a high-speed impact. At the same time, the vehicle’s sensors rapidly analyze the crash dynamics and determine the optimal deployment of safety restraints, including airbags and seat belt pre-tensioners. These split-second actions are crucial in keeping occupants safe.
As the crash progresses, the vehicle’s structure deforms in a carefully engineered sequence. The drive unit cradle bends, directing the solid drive unit downward and out of the way, allowing the gigacasting to begin absorbing impact forces.
The casting crushes cell by cell, methodically dissipating energy in a controlled manner. This gradual deceleration reduces the g-forces transferred to occupants, making the crash much less severe. As the gigacast begins crushing, the safety restraints are deployed.
As Wes points out in his post - you can see how accurate the virtual analysis and modeling were. The video shows the simulated crash side by side with the real-life crash test and they’re almost identical. All that virtual testing helps provide feedback into the loop to design a better and safer system - one that is uniquely different than any other vehicle on the road.
All the armchair experts claimed the Cybertruck has no crumple zone and I get it, the proportions seem impossible. It was a tough one and there is a lot of engineering that went into it. Let me break it down for you:
Tesla has pioneered the use of single-piece castings for the front and rear sections of their vehicles, thanks to its innovative Gigapress process. Many automakers are now following suit, as this approach allows the crash structure to be integrated directly into the casting.
This makes the castings not only safer but also easier to manufacture in a single step, reducing costs and improving repairability. For example, replacing the entire rear frame of a Cybertruck is estimated to cost under $10,000 USD, with most of the expense coming from labor, according to estimates shared on X after high-speed rear collisions.
These insights come from Sandy Munro’s interview (posted below) with Lars Moravy, Tesla’s VP of Vehicle Engineering, highlighting how these advancements contribute to the improvements in Tesla’s latest vehicles, including the New Model Y.
However, with the new Model Y, Tesla has decided to go a different route and eliminated the front gigacast.
No Front Casting
Tesla’s factories aren’t equipped to produce both front and rear castings for the Model Y. Only Giga Texas and Giga Berlin used structural battery packs, but these were quickly phased out due to the underwhelming performance of the first-generation 4680 battery.
Tesla has gone back to building a common body across the globe, increasing part interchangeability and reducing supply chain complexity across the four factories that produce the Model Y. They’ve instead improved and reduced the number of unique parts up front to help simplify assembly and repair.
There is still potential for Tesla to switch back to using a front and rear casting - especially with their innovative unboxed assembly method. However, that will also require Tesla to begin using a structural battery pack again, which could potentially happen in the future with new battery technology.
Rear Casting Improvements
The rear casting has been completely redesigned, shedding 7 kg (15.4 lbs) and cutting machining time in half. Originally weighing around 67 kg (147 lbs), the new casting is now approximately 60 kg (132 lbs).
This 15% weight reduction improves both vehicle dynamics and range while also increasing the rear structure’s stiffness, reducing body flex during maneuvers.
Tesla leveraged its in-house fluid dynamics software to optimize the design, resulting in castings that resemble organic structures in some areas and flowing river patterns in others. Additionally, manufacturing efficiency has dramatically improved—the casting process, which originally took 180 seconds per part, has been reduced to just 75 seconds, a nearly 60% time reduction per unit.
Advancements in die-casting machines and cooling systems have allowed @Tesla to dramatically reduce cycle times and improve dimensional stability. pic.twitter.com/WB5ji67rvV
Tesla’s new casting method incorporates conformal cooling, which cools the die directly within the gigapress. Tesla has been refining the die-casting machines and collaborating with manufacturers to improve the gigapress process.
In 2023, Tesla patented a thermal control unit for the casting process. This system uses real-time temperature analysis and precise mixing of metal streams to optimize casting quality. SETI Park, which covers Tesla’s manufacturing patents on X, offers a great series for those interested in learning more.
The new system allows Tesla to control the flow of cooling liquid, precisely directing water to different parts of the die, cooling them at varying rates. This enables faster material flow and quicker cooling, improving both dimensional stability and the speed of removing the part from the press for the next stage.
With these new process improvements, Tesla now rolls out a new Model Y at Giga Berlin, Giga Texas, and Fremont every 43 seconds—an astounding achievement in auto manufacturing. Meanwhile, Giga Shanghai operates two Model Y lines, delivering a completed vehicle every 35 seconds.