Tesla was pretty light on the specifications and details behind the vehicles, but there was some information that made its way out to the open in the following days. We’ve gathered up all that juicy information, so leave your Supercharger cable behind, and let’s take a look at some Cybercab battery and range details.
In addition to Tesla Vision, Optimus leverages many of our vehicles' hardware components, like batteries, cameras & computers
Tesla released this excellent animation on X recently, which looked at the similarities between Optimus - Tesla’s humanoid robot - and the Cybercab. The key note is that the Cybercab and Optimus share the same batteries, same computer, and same cameras, all based on AI5. So, assuming the video is accurate, we can roughly determine how many batteries are inside the Robotaxi, and then extrapolate the range as well. We’ve also got a second method to take estimate the vehicle’s battery size, based on the video where Tesla showed off the Cybercab’s wireless charging capabilities.
Method 1: Counting Batteries
Based on the animation, the grid of cells is 27 wide by 30 tall. If the video accurately depicts the Cybercab’s battery pack, that gives us 810 cells. We already know the 4680 battery pack in the Cybertruck has 1,344 cells, with a capacity of 123 kWh.That’s about 0.09kWh per cell, which works out to 74.685kWh in the Cybercab.
However, we feel that this number is far too large, especially given that Tesla is already intending to use the new NC05 battery format in the Cybercab. We expect the Cybercab to launch with a battery smaller than the Model 3 Standard Range (54 kWh). Therefore, we can try a different method to determine the pack size.
Method 2: Charging Math
Rafael Levy on X helped out with this calculation - it's possible to extrapolate the battery size in the Cybercab by looking at the charge rate, time remaining, and battery max charge level in Tesla’s wireless charging video. In the video, the car starts charging at 35% and is being charged at about 25 kW. The video shows the charger starting at 19 kW and going up to 25 kW of power. The video also shows that the vehicle is charged for 56 minutes. Near the end of the video the vehicle finishes charging at 80% - likely suggesting a non-LFP battery.
When you calculate it out - 25 kW for 56 minutes, you get 23.3 kWh, which is 45% of the battery pack (35% to 80%). Calculating for the full pack, it sounds like the Cybercab’s battery pack is approximately 51kWh, a much more reasonable number.
We expect the Cybercab to launch with the new NC05 cells that Tesla has been working on, which will likely be a smaller, more efficient cell than the Cybercells in today’s Cybertruck. Those smaller cells will also have less energy per cell while also taking up less space and being easier to warm or cool due to overall thermal mass.
The Cybercab doesn’t need to solve every travel case, just the most popular, which would be shorter distances. Tesla’s goal with the Cybercab is efficient and cost-effective, and a smaller battery pack definitely fits into that motive. We expect the Cybercab to include between a 40 kWh and 50 kWh battery pack.
Being autonomous, the Cybercab will have more opportunities to charge and clean itself without inconveniencing the consumer since it could go to a nearby hub after dropping off a customer.
Cybercab / Robotaxi Range
Yesterday, Tesla shared its Q3 earnings call deck, which revealed some new information about the Cybercab. In it, Tesla stated that the Cybercab will include a new powertrain and will achieve an estimated 5.5 miles per kWh. For reference, the Model 3 Long Range gets about 3.9 miles per kWh, so this is a massive improvement. Some of the improvements likely lie in the Cybercab's lighter weight and improved aerodynamics, but the new powertrain likely also brings some increased efficiency.
If the Cybercab achieves 5.5 miles per kWh, we can speculate that, depending on the battery pack size, it’ll have a range between 220 and 270 miles.
Top Gear also attended the Robotaxi event and was told by an employee that Tesla is aiming for a vehicle with 200 miles of range, which matches the lower end of our calculations above. Top Gear also stated at the time that the Cybercab would achieve 5.5 miles per kWh, which Tesla revealed yesterday.
Subscribe
Subscribe to our newsletter to stay up to date on the latest Tesla news, upcoming features and software updates.
Tesla signaled its intention to launch its first Robotaxi network in Austin, Texas, with company-owned and operated vehicles, back in January. This network will be Tesla’s first foray into truly autonomous vehicles - ones that aren’t being directly supervised by a driver. Later in February, Tesla’s executive team confirmed that the plans were on track for the launch of the Austin network both on X and during several interviews that they participated in.
At the end of February, we also found out that Tesla has applied for a Supervised Robotaxi license in California, where the network will also launch, but with safety drivers in place.
This is an ambitious plan, but FSD has really come a long way in the past year. FSD V12 was a massive step forward from V11, and V13 has made the experience smoother and safer than ever before. FSD V14 is expected to be another big step up with auto-regressive transformers and audio input.
Still on Track
Now, Elon has tripled down on the fact that Tesla will be launching their first autonomous robotaxi network in Austin - just two months away at this point. It seems that Tesla is fully set to launch their first fully unsupervised self-driving vehicles that will carry paying passengers in June.
Additional Cities
The best part is that Elon also confirmed that they’re targeting robotaxi networks launching in many cities within the United States by the end of this year. However, remember that this will be a Tesla-run network at first - Tesla owners won’t be able to add their vehicles to the Robotaxi fleet right away.
Adding Customer Vehicles
It will take some time before Tesla meets their strict internal safety requirements before it lets customers add their own vehicles to the network. Tesla’s executive team mentioned that they intend to let owners add their own vehicles to the fleet sometime in 2026. This happens to be the same time frame that Tesla plans to launch the Robotaxi across the United States, Mexico, and Canada — something that could only be done with customer-owned cars.
That final step will be bold—and it may come with complications, especially given that autonomous vehicle approval spans municipal, state or provincial, and even federal levels. There are plenty of regulatory hurdles ahead, but this is undoubtedly shaping up to be one of the most exciting times for Tesla.
Launch Event
With the Robotaxi network launching and Unsupervised FSD just around the corner, there’s a lot to get excited about. Tesla is expected to host a launch event at Gigafactory Texas in Austin to mark the debut of its first Robotaxi network. The company previously hinted that referral code users could receive invites—offering a rare chance to score an early ride in a Robotaxi outside the Hollywood studio lot.
Tesla’s engineering mule vehicles—used to test autonomy for future platforms—have resurfaced after an extended absence. The last time we saw them was back in July, when Tesla was gearing up for its initial We, Robot event. Since then, sightings have been scarce.
These vehicles typically signal that Tesla is testing new camera placements or validating FSD ground-truth data. This time, however, they appear to be outfitted exclusively with the updated camera hardware seen on the Cybercab.
New Sightings
The mules have now been spotted in Boston, Massachusetts, and Concord, New Hampshire—their first known appearances this far east. This suggests Tesla is actively collecting data to evaluate and optimize FSD performance in new regions. Thanks to Reddit user Ready_Medium_6693 for catching the one in Concord.
Elon Musk recently mentioned that Tesla plans to expand Robotaxi networks beyond the initial Texas and California launches. So while these sightings aren’t entirely unexpected, the speed of their arrival is. It suggests Tesla is confident in its ability to train FSD for local traffic rules and driving behaviors to the point it no longer needs a driver.
Bumper Cameras
The vehicle that’s been spotted in Boston is the usual Tesla engineering Model 3… except with one unique twist. It includes a front bumper camera. Shout out to @Dylan02939106 for catching the bumper camera in these photos.
The Refreshed Model 3 Mule with a Bumper Camera!
@Dylan02939106 on X
We previously released an opinion piece regarding whether the front bumper camera would be required for Unsupervised FSD. In our eyes, Tesla will require a bumper camera for Unsupervised FSD - if only to improve direct visibility in the bumper area of the vehicle. This is key for low-speed maneuvering in crowded areas like parking lots and garages, as well as for key features like Actually Smart Summon.
It isn’t surprising that Tesla is continuing to evaluate vehicles with a bumper camera - the Cybertruck, Cybercab, and Refreshed Model Y all have them now - and the rest of the lineup, including the flagship Model S and X, as well as the refreshed Model 3 - were supposed to eventually receive them as well.
With the Model S and Model X set for refreshes this year—and the front bumper camera on this Model 3 looking well-integrated rather than a temporary setup—it seems likely that front bumper cameras will soon become standard across Tesla’s entire lineup.
The Robotaxi Mule in Boston
@Dylan02939106 on X
In fact, Tesla’s newest iteration of the FSD computer has a slot for the Bumper Camera on all AI4/HW4 vehicles, so a future retrofit could even be possible.
These are some pretty exciting times - we may see Robotaxi networks actually deploy in time for Tesla’s lofty goal of “sometime in 2026” for cities throughout North America. Once many American cities begin to accept their deployment, it will be easier to seek homologation in Mexico and Canada, enabling deployment throughout the continent.