Tesla’s Robotaxi: A Look at Batteries, Range, and Pack Size

By Karan Singh
Not a Tesla App

Tesla’s Robotaxi - called the Cybercab - took to the streets at the We, Robot event - Tesla’s latest event covering autonomy for vehicles and humanoid robots.

Tesla was pretty light on the specifications and details behind the vehicles, but there was some information that made its way out to the open in the following days. We’ve gathered up all that juicy information, so leave your Supercharger cable behind, and let’s take a look at some Cybercab battery and range details.

Robotaxi Batteries

Tesla released this excellent animation on X recently, which looked at the similarities between Optimus - Tesla’s humanoid robot - and the Cybercab. The key note is that the Cybercab and Optimus share the same batteries, same computer, and same cameras, all based on AI5. So, assuming the video is accurate, we can roughly determine how many batteries are inside the Robotaxi, and then extrapolate the range as well. We’ve also got a second method to take estimate the vehicle’s battery size, based on the video where Tesla showed off the Cybercab’s wireless charging capabilities.

Method 1: Counting Batteries

Based on the animation, the grid of cells is 27 wide by 30 tall. If the video accurately depicts the Cybercab’s battery pack, that gives us 810 cells. We already know the 4680 battery pack in the Cybertruck has 1,344 cells, with a capacity of 123 kWh.That’s about 0.09kWh per cell, which works out to 74.685kWh in the Cybercab.

However, we feel that this number is far too large, especially given that Tesla is already intending to use the new NC05 battery format in the Cybercab. We expect the Cybercab to launch with a battery smaller than the Model 3 Standard Range (54 kWh). Therefore, we can try a different method to determine the pack size.

Method 2: Charging Math

Rafael Levy on X helped out with this calculation - it's possible to extrapolate the battery size in the Cybercab by looking at the charge rate, time remaining, and battery max charge level in Tesla’s wireless charging video. In the video, the car starts charging at 35% and is being charged at about 25 kW. The video shows the charger starting at 19 kW and going up to 25 kW of power. The video also shows that the vehicle is charged for 56 minutes. Near the end of the video the vehicle finishes charging at 80% - likely suggesting a non-LFP battery. 

When you calculate it out - 25 kW for 56 minutes, you get 23.3 kWh, which is 45% of the battery pack (35% to 80%). Calculating for the full pack, it sounds like the Cybercab’s battery pack is approximately 51kWh, a much more reasonable number.

We expect the Cybercab to launch with the new NC05 cells that Tesla has been working on, which will likely be a smaller, more efficient cell than the Cybercells in today’s Cybertruck. Those smaller cells will also have less energy per cell while also taking up less space and being easier to warm or cool due to overall thermal mass. 

The Cybercab doesn’t need to solve every travel case, just the most popular, which would be shorter distances. Tesla’s goal with the Cybercab is efficient and cost-effective, and a smaller battery pack definitely fits into that motive. We expect the Cybercab to include between a 40 kWh and 50 kWh battery pack.

Being autonomous, the Cybercab will have more opportunities to charge and clean itself without inconveniencing the consumer since it could go to a nearby hub after dropping off a customer.

Cybercab / Robotaxi Range

Yesterday, Tesla shared its Q3 earnings call deck, which revealed some new information about the Cybercab. In it, Tesla stated that the Cybercab will include a new powertrain and will achieve an estimated 5.5 miles per kWh. For reference, the Model 3 Long Range gets about 3.9 miles per kWh, so this is a massive improvement. Some of the improvements likely lie in the Cybercab's lighter weight and improved aerodynamics, but the new powertrain likely also brings some increased efficiency.

If the Cybercab achieves 5.5 miles per kWh, we can speculate that, depending on the battery pack size, it’ll have a range between 220 and 270 miles.

Top Gear also attended the Robotaxi event and was told by an employee that Tesla is aiming for a vehicle with 200 miles of range, which matches the lower end of our calculations above. Top Gear also stated at the time that the Cybercab would achieve 5.5 miles per kWh, which Tesla revealed yesterday.

Tesla Holiday Update Wishlist - Charging & Safety Edition

By Karan Singh
Not a Tesla App

As December approaches, Tesla’s highly anticipated Holiday update draws closer. Each year, this eagerly awaited software release transforms Tesla vehicles with new features and festive flair. If you’re not familiar with Tesla’s holiday updates, take a look at what Tesla has launched in the Holiday update the past few years.

While leaked features like Blind Spot Monitoring While Parked hint at thoughtful improvements, the real magic lies in the unexpected. From potential features such as the Apple Watch app to a smart assistant, the possibilities are endless.

For this chapter in our series, we’re dreaming up ways Tesla could improve the charging experience and even add some additional safety features. So let’s take a look.

Destination State of Charge

Today, navigating to a destination is pretty straightforward on your Tesla. Your vehicle will automatically let you know when and where to charge, as well as for how long. However, you’ll likely arrive at your destination at a low state of charge.

Being able to set your destination state of charge would be an absolute game-changer for ease of road-tripping. After all, the best EV to road trip in is a Tesla due to the Supercharger network. It looks like Tesla may be listening. Last week, Tesla updated their app and hinted at such a feature coming to the Tesla app. A Christmas present, maybe?

Battery Precondition Options

While Tesla automatically preconditions your battery when needed for fast charging, there are various situations where manually preconditioning the battery would be beneficial.

Currently, there is no way to precondition for third-party chargers unless you “navigate” to a nearby Supercharger. If you need to navigate to a Supercharger that’s close by, the short distance between your location and the Supercharger will also not allow enough time to warm up the battery, causing slower charging times.

In Europe, you can navigate to and precondition for Qualified Third Party Chargers, but not for unlabelled ones.

Live Activities

While we already mentioned Live Activities in the Tesla app wishlist, they’d be especially useful while Supercharging. Live Activities are useful for short-term information you want to monitor, especially if it changes often — which makes them perfect for Supercharging, especially if you want to avoid idle fees.

Vehicle-to-Load / Vehicle-to-Home Functionality

The Cybertruck introduced Tesla Power Share, Tesla’s name for Vehicle-to-Home functionality (V2H). V2H allows an EV to supply power directly to a home. By leveraging the vehicle’s battery, V2H can provide backup power during outages and reduce energy costs by using stored energy during peak rates.

Tesla Power Share integrates seamlessly with Tesla Energy products and the Tesla app. We’d love to see this functionality across the entire Tesla lineup. Recently a third party demonstrated that bidirectional charging does work on current Tesla vehicles – namely on a 2022 Model Y.

Adaptive Headlights for North America

While Europe and China have had access to the Adaptive Headlights since earlier this year, North America is still waiting. The good news is that Lars Moravy, VP of Vehicle Engineering, said that these are on their way soon.

Blind Spot Indication with Ambient Lighting

Both the 2024 Highland Model 3 Refresh and the Cybertruck already have ambient lighting features, but they don’t currently offer a practical purpose besides some eye candy. So why not integrate that ambient lighting into the Blindspot Warning system so that the left or right side of the vehicle lights up when there’s a vehicle in your blind spot? Currently, only a simple red dot lights up in the front speaker grill, and the on-screen camera will also appear with a red border when signaling.

Having the ambient lighting change colors when a vehicle is in your blind spot would be a cool use of the technology, especially since the Model Y Juniper Refresh and Models S and X are supposed to get ambient lighting as well.

Tesla’s Holiday update is expected to arrive with update 2024.44.25 in just a few short weeks. We’ll have extensive coverage of its features when it finally arrives, but in the meantime, be sure to check out our other wishlist articles:

How Tesla’s “Universal Translator” Will Streamline FSD for Any Platform

By Karan Singh
Not a Tesla App

It’s time for another dive into how Tesla intends to implement FSD. Once again, a shout out to SETI Park over on X for their excellent coverage of Tesla’s patents.

This time, it's about how Tesla is building a “universal translator” for AI, allowing its FSD or other neural networks to adapt seamlessly to different hardware platforms.

That translating layer can allow a complex neural net—like FSD—to run on pretty much any platform that meets its minimum requirements. This will drastically help reduce training time, adapt to platform-specific constraints, decide faster, and learn faster.

We’ll break down the key points of the patents and make them as understandable as possible. This new patent is likely how Tesla will implement FSD on non-Tesla vehicles, Optimus, and other devices.

Decision Making

Imagine a neural network as a decision-making machine. But building one also requires making a series of decisions about its structure and data processing methods. Think of it like choosing the right ingredients and cooking techniques for a complex recipe. These choices, called "decision points," play a crucial role in how well the neural network performs on a given hardware platform.

To make these decisions automatically, Tesla has developed a system that acts like a "run-while-training" neural net. This ingenious system analyzes the hardware's capabilities and adapts the neural network on the fly, ensuring optimal performance regardless of the platform.

Constraints

Every hardware platform has its limitations – processing power, memory capacity, supported instructions, and so on. These limitations act as "constraints" that dictate how the neural network can be configured. Think of it like trying to bake a cake in a kitchen with a small oven and limited counter space. You need to adjust your recipe and techniques to fit the constraints of your kitchen or tools.

Tesla's system automatically identifies these constraints, ensuring the neural network can operate within the boundaries of the hardware. This means FSD could potentially be transferred from one vehicle to another and adapt quickly to the new environment.

Let’s break down some of the key decision points and constraints involved:

  • Data Layout: Neural networks process vast amounts of data. How this data is organized in memory (the "data layout") significantly impacts performance. Different hardware platforms may favor different layouts. For example, some might be more efficient with data organized in the NCHW format (batch, channels, height, width), while others might prefer NHWC (batch, height, width, channels). Tesla's system automatically selects the optimal layout for the target hardware.

  • Algorithm Selection: Many algorithms can be used for operations within a neural network, such as convolution, which is essential for image processing. Some algorithms, like the Winograd convolution, are faster but may require specific hardware support. Others, like Fast Fourier Transform (FFT) convolution, are more versatile but might be slower. Tesla's system intelligently chooses the best algorithm based on the hardware's capabilities.

  • Hardware Acceleration: Modern hardware often includes specialized processors designed to accelerate neural network operations. These include Graphics Processing Units (GPUs) and Tensor Processing Units (TPUs). Tesla's system identifies and utilizes these accelerators, maximizing performance on the given platform.

Satisfiability

To find the best configuration for a given platform, Tesla employs a "satisfiability solver." This powerful tool, specifically a Satisfiability Modulo Theories (SMT) solver, acts like a sophisticated puzzle-solving engine. It takes the neural network's requirements and the hardware's limitations, expressed as logical formulas, and searches for a solution that satisfies all constraints. Try thinking of it as putting the puzzle pieces together after the borders (constraints) have been established.

Here's how it works, step-by-step:

  1. Define the Problem: The system translates the neural network's needs and the hardware's constraints into a set of logical statements. For example, "the data layout must be NHWC" or "the convolution algorithm must be supported by the GPU."

  2. Search for Solutions: The SMT solver explores the vast space of possible configurations, using logical deduction to eliminate invalid options. It systematically tries different combinations of settings, like adjusting the data layout, selecting algorithms, and enabling hardware acceleration.

  3. Find Valid Configurations: The solver identifies configurations that satisfy all the constraints. These are potential solutions to the "puzzle" of running the neural network efficiently on the given hardware.

Optimization

Finding a working configuration is one thing, but finding the best configuration is the real challenge. This involves optimizing for various performance metrics, such as:

  • Inference Speed: How quickly the network processes data and makes decisions. This is crucial for real-time applications like FSD.

  • Power Consumption: The amount of energy used by the network. Optimizing power consumption is essential for extending battery life in electric vehicles and robots.

  • Memory Usage: The amount of memory required to store the network and its data. Minimizing memory usage is especially important for resource-constrained devices.

  • Accuracy: Ensuring the network maintains or improves its accuracy on the new platform is paramount for safety and reliability.

Tesla's system evaluates candidate configurations based on these metrics, selecting the one that delivers the best overall performance.

Translation Layer vs Satisfiability Solver

It's important to distinguish between the "translation layer" and the satisfiability solver. The translation layer is the overarching system that manages the entire adaptation process. It includes components that analyze the hardware, define the constraints, and invoke the SMT solver. The solver is a specific tool used by the translation layer to find valid configurations. Think of the translation layer as the conductor of an orchestra and the SMT solver as one of the instruments playing a crucial role in the symphony of AI adaptation.

Simple Terms

Imagine you have a complex recipe (the neural network) and want to cook it in different kitchens (hardware platforms). Some kitchens have a gas stove, others electric; some have a large oven, others a small one. Tesla's system acts like a master chef, adjusting the recipe and techniques to work best in each kitchen, ensuring a delicious meal (efficient AI) no matter the cooking environment.

What Does This Mean?

Now, let’s wrap this all up and put it into context—what does it mean for Tesla? There’s quite a lot, in fact. It means that Tesla is building a translation layer that will be able to adapt FSD for any platform, as long as it meets the minimum constraints.

That means Tesla will be able to rapidly accelerate the deployment of FSD on new platforms while also finding the ideal configurations to maximize both decision-making speed and power efficiency across that range of platforms. 

Putting it all together, Tesla is preparing to license FSD, Which is an exciting future. And not just on vehicles - remember that Tesla’s humanoid robot - Optimus - also runs on FSD. FSD itself may be an extremely adaptable vision-based AI.

Latest Tesla Update

Confirmed by Elon

Take a look at features that Elon Musk has said will be coming soon.

More Tesla News

Tesla Videos

Latest Tesla Update

Confirmed by Elon

Take a look at features that Elon Musk has said will be coming soon.

Subscribe

Subscribe to our weekly newsletter