Tesla’s Robotaxi Event – What to Expect

By Karan Singh
Image released by Tesla
Image released by Tesla
Not a Tesla App

Tesla’s Robotaxi event—We, Robot—is right around the corner. It takes place this Thursday, October 10th. Invites for the event were recently sent out in batches to those who won the shareholder raffle, and those who RSVP will receive their tickets 2-3 days before the event.

And it’ll be happening in none other than Hollywood, Los Angeles. The event will take place at the Warner Bros. Discovery Inc. Studios, a massive 110-acre location that includes large sets prepared for all sorts of movies and TV shows.

So, let’s take a minute to take stock of what we know about the event, and what we can expect.

What We Know

We know the event is taking place in and around Discovery Inc. Studios, as Tesla has been intensively gathering FSD data in the area around the studio before the event. In addition to that, some camouflaged Robotaxi prototypes have been seen driving around the actual Studio grounds.

What’s interesting is that Tesla has been intensively gathering data throughout San Francisco, Los Angeles, and the Bay Area – including certain destinations like the Tesla Diner in Hollywood. We saw Robotaxi Mules – vehicles equipped with cameras in places we expect the Robotaxi to have them – running the routes in these areas, gathering data ahead of time to train the FSD model.

We’ve also seen some officialand some fan – renderings of what we expect Cybercab – the Robotaxi – to look like. On top of all that, we’ve seen the patents for Robotaxi Sanitization and, most excitingly – wireless EV charging!

With all that, we have some of our own expectations for the event.

Not a Tesla App

What We Expect

There’s a lot of speculation about the Robotaxi, and lots of hints that Tesla has dropped over time. We expect Tesla to deliver a small, two-door sedan with two seats. The car is expected to have four wheels, although there was some speculation of three wheels at one point. It’ll likely include a good amount of trunk space for luggage as well. Based on camouflaged vehicles, sneak peeks Tesla has shared, and the Robotaxi mules, we expect the vehicle to be quite a bit smaller, although the body styling appears to be similar to a Model 3.

Tesla’s focus will likely be on autonomy and cheap production, so don’t expect large screens, rotating seats, tables, etc, in the vehicle. It’ll likely include a single screen in the middle like the Model 3. The UI for the vehicle will likely be very similar to production vehicles today but simplified since you won’t be able to control some aspects. There may also be new modules that will display important customer information front and center, such as their ETA and fare price.

We’re not sure how much Tesla will talk about FSD hardware at the event, as they won’t want customers to feel like they’re being left out, but we expect the Robotaxi to include Tesla’s upcoming Hardware 5 FSD suite or a completely different hardware that focuses on redundancy and safeguards that will be crucial to operate an autonomous fleet.

A concept of what the UI in the Robotaxi may look like
A concept of what the UI in the Robotaxi may look like
@dkrasniy

One of the key things we expect at the event is the opportunity for attendees to experience Robotaxi, along with the entire Tesla experience from start to finish. The event will probably start with a keynote address from Elon Musk and Ashok Elluswamy – the directors of the upcoming show.

It will likely progress to a virtual demonstration of Robotaxi – including how Tesla’s upcoming Robotaxi summoning will work via the Robotaxi app, and then a quick showing of some other information at the keynote. We’ll also find out whether or not Tesla will initially launch their Robotaxi network with Tesla-owned Robotaxis, customer-owned Robotaxis, or customer-supervised vehicles.

Hopefully, Tesla also showcases a few more things – including that wireless EV charging, and potentially some other things that have been behind the curtain.

The final and most exciting portion of the event will be when users get the opportunity to be hands-on with the Robotaxi. Hopefully, they’ll get access to the interface from their Tesla app and be able to summon a Robotaxi and have it take them somewhere on the studio grounds. This time will also serve as a chance for people to get up close and personal with Robotaxi, poke around and see any unique features of the vehicle. We still have a lot to learn about the vehicle.

Of course, these are just our expectations of the event. For all we know, it could turn out to be the same, but in reverse.

For those who have been lucky enough to receive a ticket, please let us know if you have a +1. We’d love to be able to cover the event in person and experience Robotaxi ourselves.

Not a Tesla App

Tesla Holiday Update Wishlist - Charging & Safety Edition

By Karan Singh
Not a Tesla App

As December approaches, Tesla’s highly anticipated Holiday update draws closer. Each year, this eagerly awaited software release transforms Tesla vehicles with new features and festive flair. If you’re not familiar with Tesla’s holiday updates, take a look at what Tesla has launched in the Holiday update the past few years.

While leaked features like Blind Spot Monitoring While Parked hint at thoughtful improvements, the real magic lies in the unexpected. From potential features such as the Apple Watch app to a smart assistant, the possibilities are endless.

For this chapter in our series, we’re dreaming up ways Tesla could improve the charging experience and even add some additional safety features. So let’s take a look.

Destination State of Charge

Today, navigating to a destination is pretty straightforward on your Tesla. Your vehicle will automatically let you know when and where to charge, as well as for how long. However, you’ll likely arrive at your destination at a low state of charge.

Being able to set your destination state of charge would be an absolute game-changer for ease of road-tripping. After all, the best EV to road trip in is a Tesla due to the Supercharger network. It looks like Tesla may be listening. Last week, Tesla updated their app and hinted at such a feature coming to the Tesla app. A Christmas present, maybe?

Battery Precondition Options

While Tesla automatically preconditions your battery when needed for fast charging, there are various situations where manually preconditioning the battery would be beneficial.

Currently, there is no way to precondition for third-party chargers unless you “navigate” to a nearby Supercharger. If you need to navigate to a Supercharger that’s close by, the short distance between your location and the Supercharger will also not allow enough time to warm up the battery, causing slower charging times.

In Europe, you can navigate to and precondition for Qualified Third Party Chargers, but not for unlabelled ones.

Live Activities

While we already mentioned Live Activities in the Tesla app wishlist, they’d be especially useful while Supercharging. Live Activities are useful for short-term information you want to monitor, especially if it changes often — which makes them perfect for Supercharging, especially if you want to avoid idle fees.

Vehicle-to-Load / Vehicle-to-Home Functionality

The Cybertruck introduced Tesla Power Share, Tesla’s name for Vehicle-to-Home functionality (V2H). V2H allows an EV to supply power directly to a home. By leveraging the vehicle’s battery, V2H can provide backup power during outages and reduce energy costs by using stored energy during peak rates.

Tesla Power Share integrates seamlessly with Tesla Energy products and the Tesla app. We’d love to see this functionality across the entire Tesla lineup. Recently a third party demonstrated that bidirectional charging does work on current Tesla vehicles – namely on a 2022 Model Y.

Adaptive Headlights for North America

While Europe and China have had access to the Adaptive Headlights since earlier this year, North America is still waiting. The good news is that Lars Moravy, VP of Vehicle Engineering, said that these are on their way soon.

Blind Spot Indication with Ambient Lighting

Both the 2024 Highland Model 3 Refresh and the Cybertruck already have ambient lighting features, but they don’t currently offer a practical purpose besides some eye candy. So why not integrate that ambient lighting into the Blindspot Warning system so that the left or right side of the vehicle lights up when there’s a vehicle in your blind spot? Currently, only a simple red dot lights up in the front speaker grill, and the on-screen camera will also appear with a red border when signaling.

Having the ambient lighting change colors when a vehicle is in your blind spot would be a cool use of the technology, especially since the Model Y Juniper Refresh and Models S and X are supposed to get ambient lighting as well.

Tesla’s Holiday update is expected to arrive with update 2024.44.25 in just a few short weeks. We’ll have extensive coverage of its features when it finally arrives, but in the meantime, be sure to check out our other wishlist articles:

How Tesla’s “Universal Translator” Will Streamline FSD for Any Platform

By Karan Singh
Not a Tesla App

It’s time for another dive into how Tesla intends to implement FSD. Once again, a shout out to SETI Park over on X for their excellent coverage of Tesla’s patents.

This time, it's about how Tesla is building a “universal translator” for AI, allowing its FSD or other neural networks to adapt seamlessly to different hardware platforms.

That translating layer can allow a complex neural net—like FSD—to run on pretty much any platform that meets its minimum requirements. This will drastically help reduce training time, adapt to platform-specific constraints, decide faster, and learn faster.

We’ll break down the key points of the patents and make them as understandable as possible. This new patent is likely how Tesla will implement FSD on non-Tesla vehicles, Optimus, and other devices.

Decision Making

Imagine a neural network as a decision-making machine. But building one also requires making a series of decisions about its structure and data processing methods. Think of it like choosing the right ingredients and cooking techniques for a complex recipe. These choices, called "decision points," play a crucial role in how well the neural network performs on a given hardware platform.

To make these decisions automatically, Tesla has developed a system that acts like a "run-while-training" neural net. This ingenious system analyzes the hardware's capabilities and adapts the neural network on the fly, ensuring optimal performance regardless of the platform.

Constraints

Every hardware platform has its limitations – processing power, memory capacity, supported instructions, and so on. These limitations act as "constraints" that dictate how the neural network can be configured. Think of it like trying to bake a cake in a kitchen with a small oven and limited counter space. You need to adjust your recipe and techniques to fit the constraints of your kitchen or tools.

Tesla's system automatically identifies these constraints, ensuring the neural network can operate within the boundaries of the hardware. This means FSD could potentially be transferred from one vehicle to another and adapt quickly to the new environment.

Let’s break down some of the key decision points and constraints involved:

  • Data Layout: Neural networks process vast amounts of data. How this data is organized in memory (the "data layout") significantly impacts performance. Different hardware platforms may favor different layouts. For example, some might be more efficient with data organized in the NCHW format (batch, channels, height, width), while others might prefer NHWC (batch, height, width, channels). Tesla's system automatically selects the optimal layout for the target hardware.

  • Algorithm Selection: Many algorithms can be used for operations within a neural network, such as convolution, which is essential for image processing. Some algorithms, like the Winograd convolution, are faster but may require specific hardware support. Others, like Fast Fourier Transform (FFT) convolution, are more versatile but might be slower. Tesla's system intelligently chooses the best algorithm based on the hardware's capabilities.

  • Hardware Acceleration: Modern hardware often includes specialized processors designed to accelerate neural network operations. These include Graphics Processing Units (GPUs) and Tensor Processing Units (TPUs). Tesla's system identifies and utilizes these accelerators, maximizing performance on the given platform.

Satisfiability

To find the best configuration for a given platform, Tesla employs a "satisfiability solver." This powerful tool, specifically a Satisfiability Modulo Theories (SMT) solver, acts like a sophisticated puzzle-solving engine. It takes the neural network's requirements and the hardware's limitations, expressed as logical formulas, and searches for a solution that satisfies all constraints. Try thinking of it as putting the puzzle pieces together after the borders (constraints) have been established.

Here's how it works, step-by-step:

  1. Define the Problem: The system translates the neural network's needs and the hardware's constraints into a set of logical statements. For example, "the data layout must be NHWC" or "the convolution algorithm must be supported by the GPU."

  2. Search for Solutions: The SMT solver explores the vast space of possible configurations, using logical deduction to eliminate invalid options. It systematically tries different combinations of settings, like adjusting the data layout, selecting algorithms, and enabling hardware acceleration.

  3. Find Valid Configurations: The solver identifies configurations that satisfy all the constraints. These are potential solutions to the "puzzle" of running the neural network efficiently on the given hardware.

Optimization

Finding a working configuration is one thing, but finding the best configuration is the real challenge. This involves optimizing for various performance metrics, such as:

  • Inference Speed: How quickly the network processes data and makes decisions. This is crucial for real-time applications like FSD.

  • Power Consumption: The amount of energy used by the network. Optimizing power consumption is essential for extending battery life in electric vehicles and robots.

  • Memory Usage: The amount of memory required to store the network and its data. Minimizing memory usage is especially important for resource-constrained devices.

  • Accuracy: Ensuring the network maintains or improves its accuracy on the new platform is paramount for safety and reliability.

Tesla's system evaluates candidate configurations based on these metrics, selecting the one that delivers the best overall performance.

Translation Layer vs Satisfiability Solver

It's important to distinguish between the "translation layer" and the satisfiability solver. The translation layer is the overarching system that manages the entire adaptation process. It includes components that analyze the hardware, define the constraints, and invoke the SMT solver. The solver is a specific tool used by the translation layer to find valid configurations. Think of the translation layer as the conductor of an orchestra and the SMT solver as one of the instruments playing a crucial role in the symphony of AI adaptation.

Simple Terms

Imagine you have a complex recipe (the neural network) and want to cook it in different kitchens (hardware platforms). Some kitchens have a gas stove, others electric; some have a large oven, others a small one. Tesla's system acts like a master chef, adjusting the recipe and techniques to work best in each kitchen, ensuring a delicious meal (efficient AI) no matter the cooking environment.

What Does This Mean?

Now, let’s wrap this all up and put it into context—what does it mean for Tesla? There’s quite a lot, in fact. It means that Tesla is building a translation layer that will be able to adapt FSD for any platform, as long as it meets the minimum constraints.

That means Tesla will be able to rapidly accelerate the deployment of FSD on new platforms while also finding the ideal configurations to maximize both decision-making speed and power efficiency across that range of platforms. 

Putting it all together, Tesla is preparing to license FSD, Which is an exciting future. And not just on vehicles - remember that Tesla’s humanoid robot - Optimus - also runs on FSD. FSD itself may be an extremely adaptable vision-based AI.

Latest Tesla Update

Confirmed by Elon

Take a look at features that Elon Musk has said will be coming soon.

More Tesla News

Tesla Videos

Latest Tesla Update

Confirmed by Elon

Take a look at features that Elon Musk has said will be coming soon.

Subscribe

Subscribe to our weekly newsletter