Tesla's Dry Cathode 4680 Battery Cells Will Mean Cheaper, Better EVs

By Karan Singh
Not a Tesla App

During the 2024 Shareholder Meeting, Elon Musk announced that Tesla has made new innovations on the 4680 cell standard. Tesla has been working hard for several years to get a functional 4680 cell in production that either matches or beats the performance of the existing 2170 cell. The official Cybertruck account also shared an image (below) of the first 4680 dry-cathode process Cybertruck with its production crew on X.

We’re going to take a bit of a dive into the 4680, what exactly this new process and cell is, and then some of its possible advantages. So, grab your charging cable!

What is the Dry Process?

Dry Battery Electrode (DBE) is a different process overall from the current Wet Battery Electrode (WBE) that is common today. This dry process removes the highly toxic solvents and furnace baking processes from the equation, saving both time and space, while also being environmentally friendly.

The Dry Cathode we’re talking about specifically means that the electrode – the conducting terminal at the edges of the battery – is produced in a dry process. In the previous process, it was produced with a wet process.

Tesla’s 4680 cell suppliers – LG and Panasonic – have both been working hard to cut down on costs and ramp up their own 4680 cell production while Tesla works on their own internal improvements as well. If Tesla has found a means to easily scale the Dry Cathode method, it’ll make 4680 cells and the batteries that they are a part of - cheaper to produce.

The 4680 Cell

The 4680 cell - 46mm wide, 80mm tall
The 4680 cell - 46mm wide, 80mm tall
Not a Tesla App

Tesla has used the 4680 cells to make structural battery packs for the Model Y. However, these vehicles had poor charging performance and lower energy density, and they were quickly removed from sales. The sheer size of the 4680 cell made it difficult to cool, limiting its performance.

The updated 4680 cell was announced at the November 2023 Earnings Call as Cybercell, making a comeback for the Cybertruck. This new version was going to have better energy density, as well as improved charging performance.

Sandy Munro of Teardown Titan fame showed that this improved version has about a 12% energy density increase, a pretty significant improvement. You can watch his teardown of the Cybertruck below.

Tabless Design

The tabless design of the 4680 cell also has an impact on its production, and how easy it is to manufacture. Think of the tabs as the little nubs on the top of a regular small battery. The lack of tabs means that production of the cell body doesn’t have to pause to add the tabs, reducing the chance for defects with the elimination of a process, and making it faster to boot.

Removing the tab also helps in cutting down the distance that electrons have to travel to get in and out of the cell – this means less resistance, and less energy lost in the process, increasing overall vehicle efficiency.

Advantages

This new 4680 cell process has a few advantages – including an overall cost reduction of up to 50% compared to the current wet process. That’s in addition to the dry process being more environmentally friendly, which will also allow for manufacturing of the cell to scale quicker.

Tesla wants to move from the standard 2170 cell to the 4680 cell for several reasons. The biggest, by far, is cost savings. The 4680 cell is physically a bigger cell and can be used to structurally support the vehicle, meaning cost savings on both, the production of the 4680 cell and the structure of the vehicle.

Easy and Cheap

There’s more too – the 4680 cell will be easier to manufacture because of its bigger size. The 2170 cell is tall and thin, while the 4680 cell is wide and stout. In addition, its unique tab-less design is supposed to generate less resistance, improving charging speeds and cell performance.

Essentially, Tesla can fill the space taken up by 4,400 2170 cells with only 960 4680 cells. This results in a significant reduction in the material used to encase each individual cell, thereby saving space and maximizing energy density for the space the battery pack takes up.

All in all, that could mean a future price drop for the Cybertruck as well as increase the rate of production. Tesla has envisioned producing approximately 250,000 Cybertrucks per year, and they’ll need a lot of 4680 battery packs to do so.

In the future, we can see Tesla bringing the 4680 cell with all these improvements - and more - to the rest of its vehicle lineup, as they will eventually surpass the 2170 cell technology.

Tesla Plans CyberCanopy Supercharger with RGB Lighting and UFO-Inspired Design

By Karan Singh
Not a Tesla App

Back in 2023, Tesla put together a rather unique Supercharger site idea - one with a CyberCanopy. This canopy is intended to provide solar power for Supercharging, helping to reduce the impact on the local grid while also providing a futuristic and Cybertruck-themed location that would set it apart.

Unfortunately, the plans never moved beyond the filing stage. Instead, Tesla opened a standard-looking Supercharger at the same Canton, Massachusetts location. However, the site is still well-situated just off the highway and benefits from natural tree cover in the parking area.

However, Tesla is at it again with a concept for another CyberCanopy with RGB lighting. Thanks to MarkoRP for spotting this. No April Fool’s this time.

We want to build a few Superchargers cool enough to be worthy of the trip itself. - Max de Zegher

CyberCanopy 2

This second Supercharger with CyberCanopy is set for Roswell, New Mexico, at the Whataburger in town. Featuring just eight stalls, this will be one of Tesla’s smaller Supercharger sites, but for what it lacks in size, it makes up for it in uniqueness. The charging stalls are covered from the rain by a futuristic, Cybertruck-themed canopy, which will have solar panels installed on the top of it.

According to the plans, the CyberCanopy boasts 20.88kW of solar panels on its roof, providing shelter from the elements while also providing some power back to the grid.

RGB Lighting

At nighttime, the Supercharger will make a big statement. Tesla intends to light the long edges of the canopy, which will not only look amazing, but it’ll actually make finding the Supercharger easier in a large parking lot.

The lighting coming off the edge of the canopy reminds us a lot of the lightbar on the Cybertruck and now the new Model Y. It’s definitely the direction Tesla is moving for all their models, so expect all future models to have it, including the new Roadster and the next-gen model.

Tesla’s Max de Zegher also took to X after the plans for the new Supercharger were found and shared the image above. He stated that Tesla wants to build a few cool Superchargers that will be worth stopping at, even if they’re out of the way a little bit. So it seems like this isn’t just a concept, but an idea that Tesla wants to expand to several areas around the country or world.

Sending Energy to the Grid

This particular site doesn't have a Megapack or other form of energy storage, unlike the upcoming Harris Ranch Supercharger site in California. That means that Tesla won’t be storing the solar energy gained from this site, but instead will be either offsetting the immediate grid impact or serving energy back to the grid when the site isn’t actively charging.

Tesla will likely be incorporating V4 Superchargers, including both V4 posts and the new, more powerful V4 Cabinets, as the permit states that Tesla will be redesigning the site internally before beginning construction. For Cybertruck owners, 500kW charging may be around the corner.

We’re hoping Tesla continues to deploy these kinds of Supercharger sites around the world - they make a stylistic statement about Tesla’s futurism, like the Shell gas station that was upcycled into a Supercharger site earlier this year in Spain.

They also make a big impact for ownership because it is a far more comfortable charging experience when you stop at a site that’s shaded from the elements - and one that’s better for the environment with offset emissions.

Imagining Tesla’s Robotaxi Network Charging Stations

By Karan Singh
Not a Tesla App

It was a rainy April 1st when a news-searching author went on a delve into the depths of April Fools to find fact from falsehood. And while we found a lot of fantastic jokes, we also found some good ideas.

So, with a shoutout to MarcoRP on X, whose April Fool’s Joke gave us a good run for our money for a couple of minutes, we thought to ourselves - what would a Cybercab Charging Station / Cleaning Hub really look like?

Cybercab Wireless Charging Sites

Now, before continuing, we’d like to point out that the image up top is a joke from Marco - it isn’t an accurate or real site map submission from Tesla. However, it gave us the impetus to think critically about what is required for a Robotaxi fleet, based primarily on the Cybercab, to be able to service a city.

Requirements

Tesla will likely need to charge a small fleet of Cybercabs at a single time and in a single place. That means that the site needs to be large enough to cover a major metro area while also still being compact enough to not cost too much money to build out.

In addition, we need to factor in charge times. The Cybercab is likely to launch with a battery around 50 kWh, which will result in a range of approximately 300 miles. With that much range, the average Cybercab may not need to charge more than once or at all during daytime shifts, so instead, most of the vehicles will charge overnight.

MarcoRP

Math and Charge Times

The overnight charging means that most of these vehicles could be charged slowly. When we did some back-of-the-napkin math last year, we determined that Tesla’s wireless charger will likely peak around 17 kW (for comparison, Tesla’s Wall Connector at 32 amps charges at about 7 kW). If we scale Tesla’s wireless charger down slightly to 10 kW, accounting for some energy loss and the potential size of the site, that means a Cybercab will be able to charge in about 5 hours.

Tesla’s upcoming V4 Supercharger unit can currently handle 1.5MW per cabinet, but this slower-speed charging is A/C, not DC, which means there is a step-down loss of about 3-5%. Let’s make that a comfortable 10% for any other overages, but we can estimate around 1.35MW of power. That 1.3MW will easily handle charging up to 100 Cybercabs at once - all wirelessly, using Tesla’s unique beam-forming and beam-steering technology to keep efficiency high at every single stall.

Within about 5 hours, a whole fleet of 100 Cybercabs could be charged overnight when electricity rates are cheaper and still be out in time for the morning commute.

While this is all just hypothetical, it really does make sense that Tesla will be establishing these sites that won’t require much space or a ton of energy.

Tesla recently curtained off a large section of the parking garage at Giga Texas, as well as some of their chargers on the eastern end of the facility, leading us to believe they may just be testing this at scale internally.

There’s a lot to look forward to with Tesla’s V4 Supercharger deployment coming this year and with Robotaxi launching in just a couple of months.

Latest Tesla Update

Confirmed by Elon

Take a look at features that Elon Musk has said will be coming soon.

More Tesla News

Tesla Videos

Latest Tesla Update

Confirmed by Elon

Take a look at features that Elon Musk has said will be coming soon.

Subscribe

Subscribe to our weekly newsletter