Tesla introduced 'apps' with their WeChat integration in China
Not a Tesla App
Earlier this year Tesla integrated WeChat applets, or mini-programs, as part of their holiday update in China. This move has sparked curiosity and speculation about whether these applets are a sneak peek into Tesla's long-rumored app store. To understand the significance of this development, let's first explore what WeChat and its applets are and how they function.
What is WeChat and Applets?
WeChat is a popular messaging, social media, and mobile payment app developed by Tencent, a Chinese technology company. It offers various features, such as messaging, voice and video calls, social media sharing, mobile payments, official accounts for brands and public figures, and location-based services. Since its launch in 2011, WeChat has become an essential app for millions of users, particularly in China, where it has integrated into various aspects of daily life.
WeChat applets, also known as WeChat mini-programs, are lightweight applications that run within the WeChat platform. These applets offer various functionalities and services, similar to standalone apps, but without users needing to download or install them separately. They are designed to load quickly and integrate seamlessly with the platform, providing a smooth user experience.
Tesla's WeChat Applets in Action
Below you can view Tesla's extensive applets available through WeChat that offer video streaming, audio books, flight tracking and more. Huge thanks to one of our readers who recorded this video for us.
Tesla New Year Update
In the context of Tesla's New Year update for the Chinese market, these WeChat applets have been integrated into the Tesla OS, offering extensive features that behave like apps. The applets function like websites, but their app-like behavior comes from their seamless integration with the vehicle. For example, when users tap an audiobook within an applet, it will play the audio through the car's music player, showcasing the applets' app-like functionality.
Tesla's move towards applets is likely inspired by Progressive Web Apps (PWAs), a standard for developing websites that can be installed, made available offline, and have app icons and assets saved instead of being loaded each time. This approach could be a strategic move for Tesla as they plan to develop their app store.
Easier Developer Access
By leveraging existing PWAs like Twitter, Tesla could quickly offer a range of popular apps upon launch, making it easy for developers to add their apps to Tesla's platform. As PWAs gain popularity, the Tesla app store will continue to grow, offering more variety to Tesla users.
As we reported more than a year ago, Tesla is actively developing an app store for its vehicles, rumored to be released this year. Concept designer DeleetDesigns even offered a vision of what a Tesla app store could look like.
A Tesla app store is an exciting prospect, but it may differ from traditional app stores like Apple's or Google's. Tesla is likely to focus on apps well-suited for use in a car rather than replicating the smartphone experience.
Do Tesla Have the Computing Power?
For the Tesla app store to succeed, it must leverage the benefits of the car's larger screen and integration with the vehicle. Tesla will likely build developer tools to enable the creation of apps that integrate into their OS, such as SiriusXM, YouTube Music, and video streaming apps like YouTube TV and Amazon Prime Video.
Moreover, the Tesla app store could enable developers to port additional games to Tesla vehicles, offering owners a wider range of gaming options.
An app store would be a significant win for Tesla, allowing them to offload the development of entertainment apps to other companies while freeing up engineers' time and providing owners with the desired apps.
However, running apps like those on smartphones and tablets would require a more capable processor than most Teslas. Only MCU 3-equipped vehicles would likely support such an app store, which only became available in late 2021. Tesla's WeChat applets require the Ryzen processor in MCU 3, and if Tesla does offer more web-based apps, the requirement may remain.
Tesla's integration of WeChat Applets in China may indicate the company's progress towards an app store. Although we should adjust our expectations for what a Tesla app store will entail, it's an exciting development that could greatly enhance the Tesla experience.
The Super Manifold is Tesla’s solution to reducing the complexity of a heat pump system for an EV. Tesla showed off its engineering chops back with the original Model Y in 2019, where it introduced a new 8-way valve (the Octovalve) and a new heat pump alongside the uniquely designed Super Manifold to improve efficiency.
Now, Tesla is launching an improved version with the refreshed Model Y - the Super Manifold V2. We got to hear about it thanks to Sandy Munro’s interview with Tesla’s Lars Moravy (Vice President of Vehicle Engineering) and Franz Von Holzhausen (Chief of Vehicle Design). You can watch the video further below.
What Is The Super Manifold?
The Super Manifold (get it, Superman?), is an all-in-one package that brings in all the components of a heat pump system into one component. The Super Manifold packs all the refrigerant and coolant components around a 2-layer PCB (printed circuit board).
This Super Manifold would normally have 15 or 20 separate components, but Tesla managed to integrate them all into one nice package. That presented Tesla with a new challenge: how to integrate a heat pump—capable of both heating and cooling—into a single, efficient platform?
Several years ago, Tesla designed the Octovalve. It combines inlets and outlets and can variably change between heating or cooling on the fly - without needing to be plumbed in different directions. This is especially important for EVs, which may need to heat the battery with the waste heat generated from the motors or the heat pump while also cooling the cabin - or vice versa.
Original Super Manifold V1.1
Tesla launched the Super Manifold V1.1 back in 2022, and it provided some minor improvements to the waste heat processing of the heat exchange system. It also tightened up the Octovalve, preventing the leakage of oils into the HVAC loop that could cause it to freeze at extremely low temperatures.
Tesla has been using the V1.1 for several years now, and it has really solved the vast majority of issues with the heat pump system that many older Model Ys experienced.
Super Manifold V2 Coming Soon
Now, Tesla is introducing the Super Manifold V2 in the new Model Y. It will improve the overall cooling capacity provided by the original Super Manifold, but unfortunately, not every single new Model Y will come with it equipped. Tesla will be introducing it slowly across the lineup and at different rates at different factories, depending on part availability.
Eventually, the Super Manifold V2 will also make its way to other vehicles, potentially including the upcoming refresh for the Model S and Model X, but initially, it’ll be exclusive to the new Model Y. Tesla expects to have the new manifold in every new Model Y later this year.
If you’re interested in checking out the whole video, we’ve got it for you below.
Mark Rober, of glitter bomb package fame, recently released a video titled Can You Fool A Self-Driving Car? (posted below). Of course, the vehicle featured in the video was none other than a Tesla - but there’s a lot wrong with this video that we’d like to discuss.
We did some digging and let the last couple of days play out before making our case. Mark Rober’s Wile E. Coyote video is fatally flawed.
The Premise
Mark Rober wanted to prove whether or not it was possible to fool a self-driving vehicle, using various test scenarios. These included a wall painted to look like a road, low-lying fog, mannequins, hurricane-force rain, and bright beams.
All of these individual “tests” had their own issues - not least because Mark didn’t adhere to any sort of testing methodology, but because he was looking for a result - and edited his tests until he was sure of it.
Interestingly, many folks on X were quick to spot that Mark had been previously sponsored by Google to use a Pixel phone - but was using an iPhone to record within the vehicle - which he had edited to look like a Pixel phone for some reason. This, alongside other poor edits and cuts, led many, including us, to believe that Mark’s testing was edited and flawed.
Flaw 1: Autopilot, Not FSD
Let’s take a look at the first flaw. Mark tested Autopilot - not FSD. Autopilot is a driving aid for lane centering and speed control - and is not the least bit autonomous. It cannot take evasive maneuvers outside the lane it is in, but it can use the full stable of Tesla’s extensive features, including Automatic Emergency Braking, Forward Collision Warnings, Blind Spot Collision Warnings, and Lane Departure Avoidance.
On the other hand, FSD is allowed and capable of departing the lane to avoid a collision. That means that even if Autopilot tried to stop and was unable to, it would still impact whatever obstacle was in front of it - unlike FSD.
As we continue with the FSD argument - remember that Autopilot is running on a 5-year-old software stack that hasn’t seen updates. Sadly, this is the reality of Tesla not updating the Autopilot stack for quite some time. It seems likely that they’ll eventually bring a trimmed-down version of FSD to replace Autopilot, but that hasn’t happened yet.
Mark later admitted that he used Autopilot rather than FSD because “You cannot engage FSD without putting in a destination,” which is also incorrect. It is possible to engage FSD without a destination, but FSD chooses its own route. Where it goes isn’t within your control until you select a destination, but it tends to navigate through roads in a generally forward direction.
The whole situation, from not having FSD on the vehicle to not knowing you can activate FSD without a destination, suggests Mark is rather unfamiliar with FSD and likely has limited exposure to the feature.
Let’s keep in mind that FSD costs $99 for a single month, so there’s no excuse for him not using it in this video.
Flaw 2: Cancelling AP and Pushing Pedals
Many people on X also followed up with reports that Mark was pushing the pedals or pulling on the steering wheel. When you tap on the brake pedal or pull or jerk the steering wheel too much, Autopilot will disengage. For some reason, during each of his “tests,” Mark closely held the steering wheel of the vehicle.
This comes off as rather odd - at the extremely short distances he was enabling AP at, there wouldn’t be enough time for a wheel nag or takeover warning required. In addition, we can visibly see him pulling the steering wheel before “impact” in multiple tests.
Over on X, techAU breaks it down excellently on a per-test basis. Mark did not engage AP in several tests, and he potentially used the accelerator pedal during the first test - which means that Automatic Emergency Braking is overridden. In another test, Mark admitted to using the pedals.
Flaw 3: Luminar Sponsored
This video was potentially sponsored by a LiDAR manufacturer - Luminar. Although Mark says that this isn’t the case. Interestingly, Luminar makes LiDAR rigs for Tesla - who uses them to test ground truth accuracy for FSD. Just as interesting, Luminar’s Earnings Call was also coming up at the time of the video’s posting.
Luminar had linked the video at the top of their homepage but has since taken it down. While Mark did not admit to being sponsored by Luminar, there appear to be more distinct conflicts of interest, as Mark’s charity foundation has received donations from Luminar’s CEO.
Given the positivity of the results for Luminar, it seems that the video had been well-designed and well-timed to take advantage of the current wave of negativity against Tesla, while also driving up Luminar’s stock.
Flaw 4: Vision-based Depth Estimation
The next flaw to address is the fact that humans and machines can judge depth using vision. On X, user Abdou ran the “invisible wall” through a monocular depth estimation model (DepthAnythingV2) - one that uses a single image with a single angle. This fairly simplified model can estimate the distance and depth of items inside an image - and it was able to differentiate the fake wall from its surroundings easily.
Tesla’s FSD uses a far more advanced multi-angle, multi-image tool that stitches together and creates a 3D model of the environment around it and then analyzes the result for decision-making and prediction. Tesla’s more refined and complex model would be far more able to easily detect such an obstacle - and these innovations are far more recent than the 5-year-old Autopilot stack.
While detecting distances is more difficult in a single image, once you have multiple images, such as in a video feed, you can more easily decipher between objects and determine distances by tracking the size of each pixel as the object approaches. Essentially, if all pixels are growing at a constant rate, then that means it’s a flat object — like a wall.
Case in Point: Chinese FSD Testers
To make the case stronger - some Chinese FSD testers took to the streets and put up a semi-transparent sheet - which the vehicle refused to drive through or drive near. It would immediately attempt to maneuver away each time the test was engaged - and refused to advance with a pedestrian standing in the road.
Would FSD hit a transparent film wall? This test showed it just avoids it.
Thanks to Douyin and Aaron Li for putting this together, as it makes an excellent basic example of how FSD would handle such a situation in real life.
Flaw 5: The Follow-Up Video and Interview
Following the community backlash, Mark released a video on X, hoping to resolve the community’s concerns. However, this also backfired. It turned out Mark’s second video was of an entirely different take than the one in the original video - this was at a different speed, angle, and time of initiation.
Mark then followed up with an interview with Philip DeFranco (below), where he said that there were multiple takes and that he used Autopilot because he didn’t know that FSD could be engaged without a destination. He also answered here that Luminar supposedly did not pay him for the video - even with their big showing as the “leader in LiDAR technology” throughout the video.
Putting It All Together
Overall, Mark’s video was rather duplicitous - he recorded multiple takes to get what he needed, prevented Tesla’s software from functioning properly by intervening, and used an outdated feature set that isn’t FSD - like his video is titled.
Upcoming Videos
Several other video creators are already working to replicate what Mark “tried” to test in this video.
To get a complete picture, we need to see unedited takes, even if they’re included at the end of the video. The full vehicle specifications should also be disclosed. Additionally, the test should be conducted using Tesla’s latest hardware and software—specifically, an HW4 vehicle running FSD v13.2.8.
In Mark’s video, Autopilot was engaged just seconds before impact. However, for a proper evaluation, FSD should be activated much earlier, allowing it time to react and, if capable, stop before hitting the wall.
A wave of new videos is likely on the way—stay tuned, and we’ll be sure to cover the best ones.